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We theoretically analyze a scheme for fast stabilization of arbitrary qubit states with high fidelities, extending a
protocol recently demonstrated experimentally [Lu ef al., Phys. Rev. Lett. 119, 150502 (2017)]. That experiment
utilized red and blue sideband transitions in a system composed of a fluxonium qubit, alow-Q LC oscillator, and a
coupler enabling us to tune the interaction between them. Under parametric modulations of the coupling strength,
the qubit can be steered into any desired pure or mixed single-qubit state. For realistic circuit parameters, we
predict that stabilization can be achieved within 100 ns. By varying the ratio between the oscillator’s damping rate
and the effective qubit-oscillator coupling strength, we can switch between underdamped, critically damped, and
overdamped stabilization and find optimal working points. We further analyze the effect of thermal fluctuations
and show that the stabilization scheme remains robust for realistic temperatures.

DOLI: 10.1103/PhysRevA.97.062345

I. INTRODUCTION

Superconducting quantum circuits are among the most
promising platforms for quantum computing, offering great
flexibility and potential for scalability by microfabrication
techniques [1-10]. Strategies for stabilizing desired qubit
states on demand constitute important building blocks for
future error-tolerant circuit QED networks, fulfilling tasks
such as qubit reset, initialization, and entanglement generation
[11-20]. In the past, several schemes have been explored
for stabilizing single-qubit [12—14,21] and multiqubit states
[15-17,20], using active feedback [12,13] or autonomous
stabilization [14-17,20,21]. The latter schemes employ en-
gineered dissipation processes [22] to counteract undesired
decoherence and protect specific quantum states. Murch et al.
[21] demonstrated a pioneering scheme that can stabilize
arbitrary single-qubit states, which is an important step towards
implementing error-correction code.

Over the past decade, tunable-coupler devices in quan-
tum circuit networks have yielded a variety of achieve-
ments [11,23-32]. Researchers have shown that parametric
modulations in tunable-coupler circuits can generate flexible
photon-conserving and -nonconserving qubit-qubit and qubit-
resonator couplings in rotating frames [11,23,29,30,33-35].
These induced interactions, often referred to as red- and blue-
sideband couplings, are tunable and can also serve as useful
resources for implementing qubit state stabilization [23,33].
In recent work [23], we experimentally demonstrated how
engineered dissipation and tunable coupling may be combined
to realize universal qubit stabilization. In the tunable-coupling
architecture of this experiment, a transmon qubit and a low-
Q resonator are coupled by a dc superconducting quantum
interference device (SQUID) loop. Red- and blue-sideband
interactions between resonator and qubit can then be produced
by modulating the magnetic flux penetrating the SQUID loop.

Based on our previous work, here we present a different
full universal stabilization protocol, which can access both
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pure and mixed qubit states. Key to achieving this is the joint
use of two flux modulation tones and a Rabi drive tone. A
large qubit anharmonicity is desirable for this scheme to work,
therefore we choose a fluxonium qubit in our circuit, instead
of a transmon qubit used in the previous paper [23]. Our
analysis shows that optimization should allow for stabilization
fidelities of over 99.5% for any pure qubit state with realistic
circuit parameters and operation temperatures. We analytically
derive the stabilization times and critical damping parameters
based on the Lindblad master equation. In contrast to previous
fixed-coupling schemes [14,21,36], we do not require large
photon numbers and the stabilization process can be completed
within relatively short times of the order of 100 ns for all qubit
states. We can further achieve stabilization of mixed states and
tune the purity of the stabilized state via the coupling-strength
ratio. In this sense, any single-qubit state on and inside the
Bloch sphere can be targeted by this scheme.

The outline of our paper is as follows. In Sec. II we
show the derivation of the Hamiltonian with red- and blue-
sideband couplings, closely following the idea of the quantum
circuit realized in Ref. [23]. Section III details the single-qubit
stabilization scheme, starting from z-axis stabilization and then
generalizing to arbitrary-axis stabilization. We systematically
study the dependence of the stabilization fidelity on dissipa-
tion rates, driving strengths, and temperature, providing both
analytical approximations of the fidelity as well as results
from numerical simulations. We investigate the stabilization
dynamics and analyze the stabilization time of the pure-state
stabilization process in Sec. IV. We provide a summary and
our conclusions in Sec. V.

II. MODEL OF A TUNABLE CIRCUIT

Our stabilization protocol is based on the device shown in
Fig. 1. The superconducting circuit consists of three compo-
nents: a lumped-element resonator, a fluxonium qubit, both

©2018 American Physical Society
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FIG. 1. Circuit diagram of the device. The three nodes a, b, and
¢ belong to the resonator mode, coupler mode, and qubit mode,
respectively. The coupler consists of a dc SQUID, which provides
an effective Josephson energy tunable via the magnetic flux ®cy sq-
This in turn alters the effective coupling strength between the qubit
and resonator.

connected in parallel with a dc SQUID, serving as an effective
coupler. The coupler is similar to a tunable inductor shared
between the resonator and qubit, the inductance of which can
be tuned by external flux.

Circuit analysis and quantization (see Appendix A for
details) yield the following Hamiltonian for the circuit:

H = 4Ean§ + 4Ebn§ + 4Ecnf + Eycngne + Epenpn,
— Ejrerr(t) cos op — E o cos(@e + ¢n)

+

Ep, E

S — @) + S0 (1)
Here the three nodes i = a, b, and ¢ belong to the resonator,
coupler, and qubit degrees of freedom. The conjugate variables
n; and ¢; denote the corresponding charge and phase oper-
ators, and E; the associated charging energies. In addition,
E, and Ej. are the capacitive coupling energies, Ey,, =
(Po/27)?/ L, , stand for inductive energies of the resonator
and qubit, and E; , are the Josephson energies of the coupler
and qubit junctions, respectively. We denote the external
magnetic fluxes penetrating the fluxonium and dc SQUID loops
by cbext,sq and Dexi s while Psq = 27Tq>ext,sq/q)0 and ¢ =
27 Oy 11/ P represent the corresponding reduced fluxes. The
former tunes the effective Josephson energy of the coupler
following the relation Ejie(t) = 2E ;i cos[@sq(?)/2] and the
latter is slightly modulated around zero flux for the generation
of a Rabi drive (details are presented in Appendix A).

By design, the coupler mode has an excitation energy far
exceeding those of the qubit and resonator and exclusively
fulfills the passive function of mediating the coupling between
the resonator and qubit. The effective Hamiltonian, reduced
to resonator and qubit modes only, is obtained by adiabati-
cally eliminating the coupling terms among the three modes.
Specifically, we perform a Bogoliubov and a Schrieffer-Wolff
transformation to decouple the three modes and integrate out
the coupler mode (see details in Appendix A), assuming that the
coupler mode remains in its ground state throughout. Dynamic
modulation of the external magnetic flux threading the SQUID
loop then leads to an effective tunable coupling between the
dressed resonator and qubit modes, whose strength we denote

by g(¢) (see derivation details in Appendix A). The resulting
effective Hamiltonian, in the dressed basis, is given by (72 = 1)

H =wa'a +w,0t0™ — xo.ala

+g)@ +a) ot +o7). )

Here w, /27 and w, /27 are the dressed resonator and qubit
frequencies and x stands for the dispersive shift. (Since the
expressions for the dressed frequencies and the dispersive
shift are lengthy, they are relegated to Appendix A.) Dynamic
modulation of @ at different frequencies can generate
sideband interactions [34] between the resonator and qubit
modes. For our stabilization scheme, we modulate the flux
with two tones of frequencies w; and w,. The time-dependent
coupling g(¢) generated by this can be approximated by

g(t) ~ g(2€; cos wit + 2¢; cos wyt), 3)

where €], parametrizes the amplitudes of the modulation
tones.
In the rotating frame reached by the unitary transformation

U= exp[iwrtaTa + ia)qta+a_], @)
the effective Hamiltonian takes on the form
H =~ g(2¢) cos wt + 2€; cos wyt)
x (e’ + He)(ote' ™' + He) — xo.ala.  (5)

Then, with modulation frequencies matching the difference
and the sum of resonator and qubit frequencies [34] w; = w, —
wy and w; = w, + w,, we arrive at the Hamiltonian essential
for the implementation of our stabilization scheme,

H =~ gei(alo™ +act) +gex(a’ot +ao™) — yo.ala. (6)

The ac Stark shift term is aremnant not helping our stabilization
scheme and should thus be made small. In the following
discussion, we will neglect this term and then validate our
approximation numerically.

III. QUBIT STABILIZATION

In this section we describe the single-qubit stabilization
scheme and discuss the dependence of stabilization fidelity on
drive strength, dissipation rates, and temperature. We show that
we can stabilize the qubit in any pure state on the Bloch sphere
as well as in any mixed state, along any desired stabilization
axis. The following discussion assumes a sufficiently large
qubit anharmonicity such that the qubit can simply be modeled
as atwo-level system. We start our discussion with stabilization
of the qubit along the z axis and then generalize to an arbitrary
axis.

This protocol differs from existing approaches in a few
key ways. In previous proposals [21,23], a detuned ac drive
is applied to the qubit, generating a uniform magnetic field
Hamiltonian for the qubit’s pseudospin in the rotating frame.
The direction and magnitude of this field are determined from
the phase, Rabi frequency, and detuning of the ac drive. The
qubit is then coupled to a lossy resonator through a coupler
with fixed direction on the Bloch sphere. The drive frequencies
are chosen such that a particular state is stabilized by an
energetic resonance condition, set by the splitting between the
two qubit states in the rotating-frame Hamiltonian. Because of
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FIG. 2. (a) Ladder diagram with only blue-sideband coupling
turned on and (b) diagram with both red- and blue-sideband couplings.
In (b), for ¥ > y, the population in |1,g) can be safely neglected.

this, the maximum fidelity is limited by the size of that splitting,
which is typically small. In contrast, our protocol leaves the
qubit alone and varies both the magnitude and direction of the
tunable coupling, ensuring that a particular state is chosen for
stabilization at the operator level rather than through energy
matching. This will allow for substantially higher maximum
fidelities, as we will now show.

A. Stabilizing the qubit along the z axis

Stabilizing the qubit’s excited state in the presence of re-
laxation is done via blue-sideband coupling and fast resonator
decay. This idea was first proposed in Ref. [33] and has been
implemented in experiments [23,33]. For the blue sideband
only, we merely need to modulate the flux at the sum frequency
(€1 = 0) and thus obtain the effective Hamiltonian

H, = gex(a'o™ +ao ™). (7

Here blue-sideband coupling strength ge, and resonator dis-
sipation rate k should be chosen much larger than the qubit
decay and dephasing rates y, I',. The stabilization mecha-
nism is highlighted in Fig. 2(a), showing the relevant energy
eigenstates and processes leading to coherent and incoherent
transitions among them. The blue-sideband terms (blue dashed
line) couple the states |m + 1,e) and |m,g), where m stands
for the photon occupation number in the resonator and g and e
denote the qubit ground and excited states. Qubit relaxation and
photon decay are marked by arrows. To assess the dynamics
of the system, consider a quantum trajectory starting in the
ground state |0,g). The blue-sideband coupling quickly shifts
occupation amplitude to the state |1,e) on the timescale
~(ges)~!. The |1,e) state will typically lose its photon in a
short time ~« ~! and thus enter the target state |0,e). Relative

to the timescales involved so far, qubit decay is slow. Whenever
the qubit does induce the system to return to the ground state
|0,g), the described process starts over, thus making |0,e) the
state predominantly occupied during the dynamics. In other
words, the system will be stabilized in |0,e) with (afa) ~ 0
and (o;) ~ 1.

For our analytic treatment, we neglect population in |1,g),
since quick photon decay is expected to prevent occupation
amplitude to build up in this state. We thus consider the
dynamics of the system in the subspace spanned by |0, g), |0,¢),
and |1,e). The evolution of the system, at zero temperature, is
governed by the Lindblad master equation

Ty

d
—£=—UMMH+KDMM+VDWTP+ZIWQM,(&

dt

where we truncate the density matrix p and all other operators
to the three levels of relevance. In the equation above, the
damping superoperator is defined by D[L]p = (2LpL' —
L'Lp — pLTL)/2. We assess the stabilization performance by
calculating the state fidelity for the qubit’s excited state F, =

(e|pqle), where p, is the qubit’s reduced density matrix. By
solving for the steady state dp/dt = 0, we obtain an analytical
expression for this stabilization fidelity

2 1 1
]—'z:\/l—[ g62+<—x+r¢,>—]c, )
K 2 ger

C =Im[(0.g|p|L,e)]

2g¢€ 2g¢€ 1 177!
=[g2+ g2+<—x+r¢>—] . (10)
y K 2 ge2

where

In the limit 2ge,/y > 2ger/k, (k/2+T'y)/ge2, one obtains
the more compact approximation

2
Foafi-|82, < |V (11)
K 2g€, |2ger

For given qubit dissipation rates, we can optimize the state fi-
delity by tuning the resonator dissipation rate x and modulation
strength ge,. First, considering fixed «, the fidelity increases
monotonically with ge, and approaches an upper limit set by
limge, o0 F; = +/1 — y/k. For fixed ge,, Eq. (11) shows that
the fidelity approximately reaches its maximum for k = 2ge,,

namely,
max F, ~ [1— 2. (12)
k>0 ger

Figure 3(a) shows numerical results for the fidelity as a function
of ge; and «, obtained by a full simulation of the steady state
based on Eq. (7). We find that high stabilization fidelities
exceeding 99.5% can be reached with realistic parameters. The
optimum condition k¥ = 2ge; is shown as the dashed line on
the «-ge, plane, which yields the maximum fidelity values.

062345-3



HUANG, LU, KAPIT, SCHUSTER, AND KOCH

PHYSICAL REVIEW A 97, 062345 (2018)

(a 2 =

Jo.98
0.98 77

0.96 ’

+0.96

0.94

0.92

0.9

0.88 |

gés/2m(MHz)

(0) »

1.8

g€ /2w (MHz)

FIG. 3. (a) Fidelity for stabilization in the excited state |e), as a
function of resonator dissipation rate k and blue-sideband coupling
strength ge,. The dotted line is the approximated maximum line from
Eq. (11). (Qubit dissipation rates are chosenas y = I', = 0.1 MHz.)
(b) Expectation of o, for different ge; and ge; [see Eq. (6)], with a
fixed /27 = 4 MHz. All results shown assume x /27 = 0.5 MHz
and a temperature of 15 mK.

We note from Eq. (11) that larger resonator decay rates will
ultimately suppress the stabilization fidelity when k > 2ge;.
This fact can be understood when considering the system
dynamics at the level of quantum trajectories: Fast resonator
decay leads to frequent jumps projecting the system state
to a quantum state with definite photon number, an effect
similar to that of repeated projective measurements of the
resonator’s occupation number. For a large resonator decay
rate, the coherent evolution between states |0,g) and |1,e) will
thus be persistently interrupted, trapping the system in |0, g)
through the quantum Zeno effect. Therefore, exceedingly large

resonator decay rates will ultimately slow down the increase of
the magnitudes of population in states |1,e) and |0,e), which
will lead to lower stabilization fidelities.

A combination of both red- and blue-sideband couplings in
Eq. (6) enables the stabilization of mixed states centered on
the z axis of the Bloch sphere. As depicted in Fig. 2(b), the
interactions between states now become more complicated,
since the three-level approximation is no longer appropriate.
Different from blue-sideband coupling, red-sideband cou-
pling promotes amplitude transfer between states |m,e) and
|m + 1,g) and may thus allow the system to access states with
more than one photon inside the resonator.

The particular qubit mixed state which is stabilized now
depends on the magnitudes and relative phases of the red- and
blue-sideband couplings. We fully characterize this mixed state
by computing the ensemble averages (o, ) and discuss their
dependence on the couplings strengths. The ensemble average
of o, in the nonequilibrium steady state is shown in Fig. 3(b)
as a function of the modulation strengths ge; and ge,, using
a fixed resonator decay rate. On average, the qubit acquires a
larger portion of the excited state |e) for increasing €, /€| and a
larger portion of the ground state |g) for decreasing €;/€;. We
note that the plot is approximately symmetric under exchange
of ge; and ge; and, simultaneously, transforming o, to —a,.
Indeed, if we momentarily neglect the slow qubit dissipation,
then the Lindblad master equation becomes invariant under
the exchange of o~ with o™, and €; with €;. The qubit will
be stabilized into a mixed state with equal weights of |e) and
|g) with (o,) =~ 0, when ge; equals ge;,. This symmetry breaks
down when sideband coupling strengths become so small that
qubit dissipation rates and the spurious ac Stark shift cannot
be neglected anymore.

Our numerical simulations show that ensemble averages of
oy and o, vanish in the steady state. This can be understood as
follows. Based on Fig. 2(b), we can divide the system into two
groups of states

10,g),11,e),12,8),13,€), - . .;
10,e),11,8),12,€),13,8), . ...

The generation of coherent qubit superposition states of |e)
and |g) would require hybridization of system states |m,e) and
|m, g) with the same resonator occupation number m. However,
red- and blue-sideband couplings can only hybridize states
within each of the two groups, which excludes superpositions
of |m,e) and |m,g). (Even if the initial state should present a
nonzero matrix element (m,e|p|m,g), decoherence processes
will effectively erase any such coherence.)

B. Stabilizing the qubit along an arbitrary axis

So far, we have discussed stabilization of the qubit in states
along the z axis of the Bloch sphere. This scheme has a natural
generalization to qubit stabilization along an arbitrary axis
through the Bloch sphere.

We employ the convention that the qubit excited state |e)
resides at the north pole of the Bloch sphere. The axis specified
by the unit vector i has polar and azimuthal angles 6 and ¢,
respectively, with the pure qubit states | 1) located at the two
points where the axis intercepts the Bloch sphere. Explicitly,
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FIG. 4. Diagram of the arbitrary-axis stabilization scheme. With

k> 77,7T, the population in |1,—f) can be safely neglected and
the system is stabilized in |0, fi).

the two pure states are given by
[fi) = si 9|)+ i GI)
i) = sin — e '? cos —|e),
28 2
- 0 0
|—f) = —e " sin 5|e) + cos E|g>. (13)

Points along the axis fi in the interior of the Bloch sphere
represent mixed states composed of |fi) and |—1), as usual.

We start by presenting how to stabilize the qubit in the pure
state i) on the Bloch sphere. Inspired by Fig. 2(b), we aim for
a Hamiltonian of the form

Hap = ge(a'of +aoy), (14)

analogous to Eq. (7). Here off are defined via Uﬁi |Fh) = |£h).
For the special case of & = 0, this Hamiltonian reduces to the
blue-sideband coupling. We call this Hamiltonian an effective
blue-sideband coupling for state |fi), which couples the system
states |m + 1,0) to |m,—fi).

As before, we require the resonator decay rate « and the
coupling strength ge to be much greater than the qubit dissi-
pation rates. As shown in Fig. 4, the effective blue-sideband
coupling for axis fi opens up a decay channel from |0,—fi) to
|0,fi) via hybridization of |0, —fi) and |1,f) and fast resonator
decay from [1,h) to |0,fi). Relative to these fast dynamics,
qubit relaxation and dephasing are slow, leading to infrequent
transitions between the states |m,h) and |m,—fi). The resulting
effective rates are given by [23]

0 r
+ =ysin4§+7¢sin29, (15)

<

[, = ~sin*@ + T, cos? 6,

where 7T are the transition rates from qubit state |fi) to |—1)
(and vice versa) and f‘¢, is the effective dephasing rate. Since
all three are much smaller than the resonator decay rate «
and sideband coupling strength ge, the effective decay from
|0, —fi) to |0,fi) dominates the dynamics and thus stabilizes
the qubit in the state |Q).

We next show how to generate the desired Hamiltonian in
Eq. (14) with our circuit QED device. We first expand off[ in

the Pauli matrix basis as

0
o =exp <— i%az> exp <— izay)ai exp

.0 ¢
x|i= —o,
i5oy)exp|izo:

| i

= 50 (cosO + 1)e™

1 |
+ Eﬁ(cose — Det? — 3 sinfo,. (16)

For simplicity (and without loss of generality) we set the
azimuthal angle ¢ = 0 and defer the discussion of nonzero ¢ to
the subsequent section. This way, we can plug the expression
of o into Eq. (14) to obtain

Hup = 1ge(cosd — D)a'o™ +ao™)
+ %ge(cos@ + Da'ot +ac7)
— L1gesinf(a' + ao.. (17)

Here Hip denotes the effective blue-sideband coupling for
state |fi). This Hamiltonian is a combination of the red- and
blue-sideband couplings, as well as a longitudinal coupling
between the qubit and the resonator [37]. The latter can be
generated by switching on a Rabi drive

Hd — S(o_feiwj;t +0+67iw3t)’ (18)

driving the qubit at the resonator frequency w3 = w, with
strength &. This drive gives rise to a longitudinal coupling of
the form

H) =gt +ao, (19)

written in the dressed basis of the appropriate rotating frame.
(We have dropped several fast-oscillating terms here.) The
Rabi drive is realized by slightly modulating the fluxonium’s
penetrating flux. The details can be found in Appendix A.
Therefore, the Hamiltonian in Eq. (17) can be generated by
tuning the strengths of the red- and blue-sideband couplings
as well as the Rabi drive to match

gel = %ge(cos@ — 1),
ger = %ge(cos@ + 1), (20)
gé = %ge sin 6,

respectively.

For a sideband coupling strength of ge/27 = 2 MHz and
resonator decay rate of k = 2ge, we can obtain state fidelities
for |fi) of up to 99.5% [see Fig. 5(a)]. At zero temperature, the
stabilization fidelity can also be obtained analytically based on
the three-level model and is approximately

~ ~ 2g€ K
Fa = /@l I0) w\/l - [i+

=
Sl O

2g€’

Details of the derivation are given in Appendix C.
Within the same approximation, we can further predict the
stabilization fidelity at finite temperatures and confirm that
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FIG. 5. (a) Stabilization fidelity for states along an axis fi in the
x-z plane, as a function of the polar angle 0 (see the inset). The
three curves depict results for different strengths of the effective blue-
sideband coupling. (Temperature and resonator decay rate are cho-
sen as T = 15 mK and «/2m =4 MHz.) (b) Dependence of the
fidelity on temperature, using x /2w = 2ge/2m = 4 MHz. Dashed
curves show the analytical prediction from Eq. (22). In both graphs,
we choose ¥ = 0.1 MHz, I’y = 0.1 MHz, and /27 = 0.5 MHz.
Excitation energies for the resonator and qubit are set to 4.89 and
5.99 GHz, respectively.

our scheme is robust to realistic levels of thermal excitations.
The approximate relation between the stabilization fidelity and
temperature is given by

FaT) my F2(0) — exp(—fieo, /s T, (22)

where JF4(T) denotes the state fidelity of |hA) obtained at
temperature 7. The quantity ,oég) represents the occupation
probability for state |0,fi) at zero temperature and is very
close to 1 in our scheme (see again Appendix C for further
details). The expression (22) shows that, to leading order,
the influence of finite temperatures is directly determined
by the comparison between resonator excitation energy fiw,
and thermal excitation energy k7. We can thus suppress the
influence of temperature by using a resonator with sufficiently
large frequency while preserving the parameters of the qubit.
Results shown in Fig. 5(b) confirm that our scheme is robust
with respect to thermal fluctuations at realistic operating
temperatures and practical circuit parameters.

One can, in addition, generate an effective red-sideband
coupling for |fi), defined as Hyg = ge(anUﬁ_ + aal;'). (Note
that with of = o7, we have Hag = H_sp.) A combination
of Hyp and Hyg can then stabilize the qubit in a mixed state of
[fi) and |—fi), similar to our previous discussion and results in

Figs. 2(b) and 3(b). In other words, we can stabilize the qubit
in a state corresponding to an arbitrary point along the axis
defined by fi. In the next section, we will discuss how to tune
the state’s azimuthal angle ¢ so that we can freely manipulate
the axis fi and effectively stabilize the qubit for any point on
and inside the Bloch sphere, at will.

C. Azimuthal angle and phase matching

So far, we have set the phases of the modulation and
drive tones to zero at t = 0 [see Eqgs. (3) and (18)]. This
special choice only enables stabilization in the ¢ = 0 plane.
To generalize this and stabilize states with arbitrary azimuthal
angle ¢, detailed control of the phases is needed. We will define
the phases of the three tones at time ¢ as

P, = w,t + vy, (23)

where n = 1,2 stand for red- and blue-sideband modulation
tones, respectively, and n = 3 stands for the Rabi drive tone.
For the latter, we set v3 = 0 without loss of generality. The
choice of the three frequencies yields the relations w; + w; =
2w, = 2w3 and w; — w; = 2w,. In the dressed bases of the
appropriately rotating frame, the effective Hamiltonian in the
presence of all three drives is then given by

H =ge(a'o"e™™ +H.c.)+ ger(a’ote ™ + Hel)

_ gt

A

Calculation shows that by tuning the strengths and phases of

the three tones the Hamiltonian in Eq. (24) can indeed generate
the effective blue-sideband Hamiltonian

(@' + a)o.. 4)

Hap = ge(a'oy +H.c), (25)

if the drive strengths and phases satisfy the following condi-
tions. First, the three phases from Eq. (23) must obey

P+ P, —2Ps=v,+v,=0. (26)

This relation reduces to one of the initial phases due to the
frequency match among the three tones, i.e., w; + @y = 2ws.
Second, for the azimuthal angle ¢, we require

(P, = P1)/2 —wgt = (v2 —v1)/2 =¢. 27)

Since w; — w; = 2w,, the azimuthal angle is simply deter-
mined by the initial phases of the modulation tones v; and v,.
Third, the strengths of the three tones must meet the conditions
of Eq. (20) to set the desired polar angle 6.

To access arbitrary azimuthal angles, we thus require
frequency matching and phase stability. Appendix B shows
one technique that can generate the three tones based on two
independent tones, through which Eq. (26) is automatically
satisfied.

IV. FAST STABILIZATION AND CRITICAL DAMPING

The time needed for stabilizing the qubit in a desired pure
state is crucial for applications such as fast qubit initialization
and reset. The timescale for pure-state stabilization is mainly
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set by ge and k. To make this statement more quantitative,
we follow the dynamics of the h-axis stabilization scheme
as described by the Lindblad master equation. Neglecting the
population amplitude associated with |1, —fi), the stabilization
process can be approximately described by the following set
of differential equations:

dp33
0% _ 2geC — cps,

dr g€ K33
dpri
— = —2g€C, 28
o ge (28)
dc

1
i — p33) — ~kC
ar ge(p11 — p33) S«

(see Appendix C for the detailed derivation). In the expression
above, p1 and ps3 are the occupation probabilities for |0, —h)
and |1,11), respectively. The quantity C denotes the imaginary
part of the off-diagonal density matrix element for states |0, —
i) and |1,1), i.e., C = Im[(0,—1i|p|1,A)].

These three first-order differential equations can be turned
into a third-order differential equation for p;y,

d*pi 43 d*piy +<4g2€2+1 dpii

2 2.2
— 42 =0,
K) T T2k
(29)

dr3 EK dt? 2

with an associated characteristic equation
(4 1)(W +kr +4g%€%) = 0. (30)

Similar to the classical damped harmonic oscillator, the sta-
bilization process can be underdamped, critically damped,
or overdamped, depending on the nature of the roots of
Eq. (30). Critically damped stabilization occurs for x =4ge,
at which point all three roots of Eq. (30) become real.
Resonator dissipation rates deviating from this working
point lead to underdamped or overdamped stabilization in-
stead. For a fixed resonator dissipation rate, different side-
band coupling strengths can also lead to all three damping
types.

Figure 6 shows the stabilization processes for different
coupling strengths ge at fixed « and for stabilizing the qubit in
its excited state |e¢) and in the superposition |x) = \/%( le) +1g)).
As ge is decreased, we find behavior characteristic of the
three damping types. Compared with critically damped sta-
bilization, a slightly underdamped case may help the system
reach the steady state faster, since the tiny oscillations, arising
from complex roots of Eq. (30), are almost negligible as
evidenced by numerical simulations. For our chosen sys-
tem parameters, we find that ge ~ k /2.6 yields the quickest
stabilization.

The stabilization time is set by 2/«, which is the character-
istic time for the critically damped stabilization process. With
realistic parameters, as chosen for Fig. 6, the stabilization can
be completed within around 100 ns.

V. CONCLUSION

In conclusion, we have presented and analyzed the per-
formance of a universal single-qubit stabilization scheme. By
modulating the external flux penetrating the coupler, red- and
blue-sideband couplings are generated between the qubit and
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FIG. 6. Stabilization processes in the time domain. The qubit
is initialized in the ground state. Shown is the expectation of (o)
when targeting (a) the excited state and (b) state |x). The insets show
the stabilization dynamics in terms of p(). (k/2m is set to 8 MHz,
T=15mK, y=0.1 MHz, I', =0.1 MHz, and x /27 =0.5 MHz.)

resonator. The combined use of both couplings and a Rabi drive
enables the generation of a special coupling between the qubit
and lossy resonator, as in Eq. (14). With it, the qubit can be
autonomously cooled towards any point on the Bloch sphere,
with fidelities over 99.5%. Such stabilization can be completed
within around 100 ns for practical parameters. Stabilizing the
qubit in mixed states, i.e., points inside the Bloch sphere, is
possible by tuning the strengths and phases of modulation and
Rabi drive tones. Our scheme is robust with respect to realistic
temperature fluctuations.

For the stabilization of pure qubit states, we have shown that
the system dynamics can be captured by a three-level model
and can be analytically solved both for the steady state and
dynamical stabilization process. The dynamical process can be
understood by a third-order differential equation, allowing us
to distinguish between underdamped, critically damped, and
overdamped stabilization. The idea of three types of stabi-
lization processes and optimization of stabilization time might
also be explored in other schemes and future generalizations
to multiqubit states.

Z.H. and Y.L. contributed equally to this work.
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TABLE I. Energy scales of circuit parameters.

Parameters Energy scale
Ef /2 ~1000 GHz
Ep [2n ~50 GHz
Ep/2n ~10 GHz
E /27 ~4 GHz
ELq’ Eaca Ebr/zn ~300 MHz
E,, Ep/27 ~100 MHz

APPENDIX A: CIRCUIT ANALYSIS

The circuit of the considered device is shown in Fig. 1 and
yields the Lagrangian

L—1C<i>2+1C ci>2+1C(ci> d>)2+1Cd>2
—zra 211/; 23 b c zqc

Ly — by @ — By — 2
B qr a b 2Lr a b 2Lq c
o, + O 2 d
+ E 5 cos (Znﬂ) + E jiee(2) cOS il b
(o Dy
(Al)
The SQUID loop’s Josephson energy Ejjeq(t) =

2E 5 cos[pg(t)/2] is tuned by the external flux ¢y () =
27 Doy (1)/ Po, which is modulated around its dc value
using two modulation tones, i.e., ¢sq(f) = @Pgq — d1 COS W11 —
d, cos wyt, with dy,d, < 1. As long as modulation amplitudes
for the external flux remain small, we can expand E ()
into its dc value and a small time-varying part

Ejie(t) = ESp + Ely (1), (A2)
where E (jol)eff is the time average of E j 1¢¢(7). The term E') | ()
can be approximated as

E'(t) ~ Qe cosont + 2e2cosmnt)E . (A3)

where 2¢, ~ sin(@ext/2)d,/2 (n = 1,2). (In this definition of
€,, a factor of 2 is included for more convenient notation in
the main text.) The Hamiltonian in Eq. (1) can be obtained
from Eq. (A1) by a Legendre transformation.

The coupler mode only serves a passive role by tuning the
coupling between the resonator and qubit. For this purpose, we
choose the energy scales of the relevant circuit parameters as
listed in Table I.

By design, the Josephson energy E (Jol)eff is the largest energy
scale so that the coupler mode b has excitation energies far
exceeding those of the qubit and resonator. The potential
energy of mode b is dominated by the term — E (Jol)eff cos @ and,
since E (Jol)eff > Ej, low-lying wave functions will be localized
around ¢, = 0. The corresponding oscillator length is given
by (8E,/E').)'* « 1. We approximate the Hamiltonian by
a second-order expansion in ¢, which gives

1
H =|:4Ebn§ + E[Eu + Ejleff(t)](p§i|

E
+ [4Ecn§ — Ejcos(p: + on) + %wf}

Eir

4E,n?
—l—[ n, + >

902i| + Eabnanb + Ebcnbnc

— ELr®a@p. (A4)
In terms of annihilation and creation operators for the a and
b modes as well as eigenstates {| j)} of the ¢ (qubit) mode, the
Hamiltonian can be rewritten in the form

H~ Quala+Qb'b+ Y Ejlj){jl
J

+ia —a) ) (gusjulj) (Kl + He)
J.k

+i(b! = b)Y (wijuli) (k| + He)
jik

+ Qap(a’ + )b + b) + Quuoa)B' + b)Y, (AS5)
Here 2, and €2, are the excitation energies of the resonator and
coupler and E; is the energy of the qubit eigenstate |j). We
design €2, to be the largest excitation energy among the three
degrees of freedom, setting €2, ~ 2w x20 GHz and Q,,E, —
Ey ~ 2m x5 GHz. Here 2, is the coupling strength between
the resonator and coupler due to the ¢, ¢, term in Eq. (A4).
The coupling strengths between the qubit and resonator (gg; jx)
or coupler (g, j«) are due to terms involving n,n; and nyn. in
Eq. (A4). These coefficients are given by

1/4
2E, 74 2E, /

Qab = EL —(0) )
Er EL+ Ej

ELr 1/4
8ajk = Eq(jlnclk) |:32Ea:| s

(A6)

Ei + EQ 1"

gk = Epc(jlnclk)| —————=
8b;jk be(jlne )|: 32E,
All of them are small quantities compared with the excitation
energies of the three modes and can be treated perturbatively.

The expression Quoq(?) = \/2Eb/(EL + E(Jol)eff)E/“eff(t) de-
fines the strength of time-dependent modulation on the coupler
mode.

Since the coupler remains in its ground state, we may
eliminate it adiabatically from the Hamiltonian. To this end,
we first adopt a Bogoliubov transformation [38] removing
the static coupling term between resonator and coupler. As
aresult of the transformation, the coefficients of the remaining
terms in Eq. (AS) will be shifted. Second, a Schrieffer-Wolff
transformation [39,40] decoupling the qubit from the other two
modes is applied. Switching to the new dressed basis, all static
couplings among the three modes are removed. The coupler’s
annihilation operator b is transformed into

Qb Qb i8bikj | .
b - b——Za— 24"+ i)k, (A7)
Aab 2ab %: Ab;ki
where Ay = Qp — Qq, Zap = Qu +Qp, and  Apy; =

Q, — (Ex — E;). The time-dependent modulation term
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Quoa(t)(b' 4 b)? is transformed, to leading order, into

2

Qunoa (1) | (b +b) + na@ +a') + > mjelj) (k| + Hee)) |
Jjk
where 1, ~ —2Q,Q4/(27 — Q2) and

&bk

i8hkj _ 18bijk
Apkj

Njk .
Apjk

With this, we finally obtain the effective Hamiltonian

H=Qa'a+) Ejlj){jl

J
+ Y Xajalal )G+ ki G
J J
2

+ Quoa(®) | mata +a' + | > njulj) k| + Hee.
Jjk

+ 2Qmoa(Da(a’ + @) | Y njlj) (k| +He. |, (A3)
J

describing the resonator and qubit modes only, where y, ; and
k; stand for the dispersive shifts [40]. When approximating
the fluxonium qubit as a two-level system, we recover the
Hamiltonian in Eq. (2), with the coefficients given by

w, = Qa + Xa,0 + Xa,1 ’
2
wy; = (E1 + k1) — (Eo + ko), (A9)
x = Xa,0 — Xa,1
—2 .

In Eq. (A8), the third line introduces small oscillations in the
resonator and qubit energies, but can be neglected within the
rotating-wave approximation. Terms in the last line of Eq. (A8)
give rise to time-dependent coupling between the resonator
and qubit and lead to the expression of g(¢) in Eq. (3). The
magnitude g of that coupling is given by

2E)

e (A10)
Ep + E e

0
g = 2nano1 E(j 1)eff

Slight modulation of the fluxonium’s reduced penetrating
flux ¢q(t) = dj cos wst yields the Rabi drive in Eq. (18). To
see this, we approximate

coslg. + gn(t)] ~ cos g — dy coswst Y fixl i)kl
jk
where fjr = (j|sin ¢ |k). In the dressed basis, this drive gives
terms involving (a' 4+ @)|0)(0| and (a' + @)|1)(1], leading to
the longitudinal coupling in Eq. (19). The coefficient g’ in
Eq. (19) is given by

Qo —

2 fo1

/

g:

(Al1)

where

iga;O' iga;‘O
ap = me(—A 0{) —foj<—A {0),
T a0 azj
iga; j iga;'
o =ij1<—A i’) —flj(—A ’i) (Al12)
7 alj aij

and Au;jk = Qu — (E] — Ek)

APPENDIX B: PHASE MATCHING
AMONG THREE TONES

In Sec. IIT C, we noted that stabilization required phase
matching [see Eqgs. (26) and (27)]. We show here that the
three modulation and drive tones obeying the desired phase
constraint can be generated by two tones.

We start with two coherent tones at the dressed resonator
and qubit frequencies

H; = cos(wyt + v1), Hp = cos(w,t + v2), B1)

where we set amplitudes to 1, for simplicity. To generate the
two modulation tones with frequencies w; », we consider the
product tone

HiHy = cos(wyt + vy) cos(w,t + vy)
= %cos[(wr — wy)t + vy — v
+ % cos[(w, + wy)t + v2 + vy]

= % cos(wit + vy —vy)+ % cos(wart + vy +vy), (B2)

which is a superposition of tones 7} and 7, with frequencies
w; and w,. Extracted via high- and low-pass filters,

Ty = cos(wit + vy —vy), Tr = cos(wart + vy + vy)

can be used for the generation of red- and blue-sideband
modulations. The Rabi drive tone can be directly generated
from

T35 = Hy = cos(w,t + vy),

since w3 = w,, choosing v, = 0. One can confirm that the
condition set in Eq. (26) is automatically satisfied in this
scheme. Moreover, the azimuthal angle [see Eq. (27)] is
conveniently chosen by ¢ = vy.

APPENDIX C: ANALYTICAL SOLUTION
OF THREE-LEVEL MODEL

We base our discussion of stabilization fidelity and time on a
three-level model shown in Fig. 4. Specifically, we neglect the
residual population of state | 1, —i) and confine the dynamics of
the system to a subspace spanned by |0, —fi), |0,A), and |1,fi).
In the case of arbitrary-state stabilization, the stabilization
dynamics is governed by the Lindblad master equation

dp

priai i[Hete,p] + k Dlalp

- — ~ + ﬁ«?
+ 7" Dlog 1o+ 77 Dlog 1o + > Dloalp, (C1)
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where H.y refers to Eq. (14) and oy is defined as o =
205r o, — 1. The decoherence rates 7, 7T, and 1;(/, were
defined in Eq. (15). The time evolution of the density matrix p
can be described in terms of four key components

dp o -
ad LI —2geC + 9 pn — 7 p11,
dt
dp o -
2 _ kp33 — 7 pn+ 7o,
dt
dps;
—— =2geC — ,
dr 8 Kp33

% = ge(pi1 — p33) — (36 + 377+ T,)C. (C)
Here pi1, p22, and p33 give the probability amplitudes for the
states |0,—n), |0,A), and |1,fi) and C = Im[{(0,—n|p]|1,R)].
Due to the constraint p1; + 022 + p33 = 1, only three of these
four equations are independent. Once qubit decoherence (with
coefficients 7T, 77, and Fw) is neglected, we recover the
differential equation (28).

The stabilized state is obtained by setting all time derivatives
in Eq. (C2) to zero, and we obtain an exact expression for the
stabilization fidelity

Faz 1|2 (Les Lo yp C. (C3)
8= p TRy e ) fEe T

(C4)

The approximate result for the stabilization fidelity of the qubit
excited state |e), givenin Eq. (5), isrecovered by taking 7+ = 0
and 7~ = y.

Thermal fluctuations will generally lower the stabiliza-
tion fidelity. The influence of temperature can be assessed
by a perturbative treatment within the three-level model.
For finite temperatures, we add the terms kg ]D)[an]p and
vn D[oT]p to the Lindblad master equation (C1), where
ki = Kk exp(—fiw, /kpT)and yy, = y exp(—hw,/kpT). Inthe
low-temperature limit (ky << € and yy < y), we maintain
(0,11p|0,R) ~ 1. Further, for w, ~ w, and y < k, we also
have yy < k. As a result, we expect the leading corrections
due to thermal excitations to be given by the excitation from
|0,i) to |1,A) at rate k. Within perturbation theory, the
first-order corrections to our zero-temperature solutions pl.(?)
(i =1,2,3)and C© obey

0=—2geCV + 7 py) — 77 oy, (C5a)

0= Kthp;g) +2geCV — Kp%), (C5b)

0= ge(ply — p3y) — (2e + 1p* +1,)CD. (CS0)

With ge and « far exceeding the qubit dissipation rates, we can
infer from Eq. (C5a) that CV should be much smaller than o'}’

and ,0512) and thus can be neglected in Egs. (C5b) and (C5b). As
a result, we find the relation

M o () K ()
P17~ Pz 7:022’ (C6)

shown in Eq. (22).
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