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Superconducting circuits have emerged as a competitive platform for quantum computation, sat-
isfying the challenges of controllability, long coherence and strong interactions between individual
systems. Here we apply this toolbox to the exploration of strongly correlated quantum matter, build-
ing a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile
recipe for dissipative preparation of incompressible many-body phases through reservoir engineering
and apply it in our system to realize the first Mott insulator of photons. Site- and time-resolved
readout of the lattice allows us to investigate the microscopic details of the thermalization process
through the dynamics of defect propagation and removal in the Mott phase. These experiments
demonstrate the power of superconducting circuits for studying strongly correlated matter in both
coherent and engineered dissipative settings. In conjunction with recently demonstrated supercon-
ducting microwave Chern insulators, the approach demonstrated in this work will enable exploration
of elusive topologically ordered phases of matter.

The richness of quantum materials originates from
the competition between quantum fluctuations arising
from strong interactions, motional dynamics, and the
topology of the system. The results of this competi-
tion manifest as strong correlations and entanglement,
observed both in the equilibrium ground state and in
non-equilibrium dynamical evolution. In most condensed
matter systems, efficient thermalization with a cold envi-
ronment and a well-defined chemical potential lead natu-
rally to the preparation of the system near its many-body
ground state, so understanding of the path to strong-
correlations– how particles order themselves under the
system Hamiltonian– often escapes notice.

Synthetic quantum materials provide an opportunity
to investigate this paradigm. Built from highly coherent
constituents with precisely controlled and tunable inter-
actions and dynamics, they have emerged as ideal plat-
forms to explore quantum correlations, owing to their
slowed dynamics and capabilities in high-resolution imag-
ing [1, 2]. Low-entropy strongly-correlated states are
typically reached adiabatically in a many-body analog
of the Landau-Zener process by slowly tuning the sys-
tem Hamiltonian through a quantum phase transition
while isolated from the environment, starting with a low-
entropy state prepared in a weakly interacting and/or
weakly correlated regime. As a prominent example from
atomic physics, laser- and evaporative- cooling remove
entropy from weakly interacting atomic gases to cre-
ate Bose Einstein condensates [3, 4] which are then
used to adiabatically reach phases including Mott in-
sulators [5], quantum magnets [6, 7], and potentially
even topologically ordered states [8]. These coherent
isolated system have prompted exciting studies of relax-
ation in closed quantum systems, including observation of
pre-thermalization [9], many-body localization [10], and
quantum self-thermalization [11]. Nonetheless, to main-
tain adiabaticity, the preparation time required in these
cases is set by the smallest many-body gaps which occur
near the quantum critical point, rather than the larger
gaps within the ordered phases. This suggests dissipative

stabilization directly into an ordered phase as a promis-
ing alternate approach, though to date thermalization
into strongly correlated phases of synthetic matter has
remained largely unexplored.

More recently, superconducting circuits have been used
to study many-body physics, leveraging the exquisite in-
dividual control of strongly interacting qubits. The plat-
form builds upon the circuit quantum electrodynamics
toolbox developed for quantum computing [12], and has
been applied to digital simulation of spin models [13],
fermionic dynamics [14] and quantum chemistry [15, 16].
Equally exciting are analog simulation experiments in
these circuits, studying low disorder lattices [17], low-loss
synthetic gauge fields [18, 19], dissipative lattices [20, 21]
and many-body localization in disorder potentials [22].
In the circuit platform, the particles that populate the
system are microwave photons that are inevitably subject
to intrinsic particle loss channels. Without an imposed
chemical potential, the photonic system eventually de-
cays to the vacuum state, naturally posing the challenge
of how to achieve strongly-correlated matter in the ab-
sence of particle number conservation.

To this end, an active area of research both theoreti-
cally and experimentally is the creation of tailored reser-
voirs [23] for preparation and manipulation of quantum
states, where the environment coupling serves as a re-
source. Engineered dissipation has been employed to
stabilize entangled states of ions [24], single qubit states
[25], entangled two qubit states [26], and holds promise
for autonomous quantum error correction [27–29].

Here, we present a circuit platform for exploration of
quantum matter composed of strongly interacting mi-
crowave photons and employ it to demonstrate direct
dissipative stabilization of a strongly correlated phase
of photons. Our scheme [30] builds upon and simplifies
previous proposals [31–33], and is agnostic to the target
phase, as long as that phase is incompressible.

To understand the protocol, illustrated in Fig. 1, con-
sider a target ground state, comprising N0 photons, that
is spectrally gapped from excited states with the same
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FIG. 1. Dissipative stabilization of incompressible
many-body states. (a) Illustration of using an engineered
environment to populate a many-body system. (b) Photons
are continuously added into the system irreversibly in a nar-
row band of energies (blue) that connect the initial vacuum
to the desired target state (star). This process stops when
the system is fully filled at N0, due to the presence of the
compressibility gap ∆comp, thereby preparing and stabilizing
the gapped (with ∆mb) many-body state where the photons
can order into strongly correlated phases as a result of the
underlying Hamiltonian. The energy dependent loss channels
(red) ensure that any accidental excitations into higher states
(gray) are short lived.

particle number with a many-body gap ∆mb. It must
additionally be incompressible with respect to change in
particle number, in the sense that inserting each of the
first N0 particles requires about the same energy, while
adding an (N0 + 1)th particle requires an energy differ-
ent by the compressibility gap ∆comp. Using a combi-
nation of coherent drive and engineered dissipation, we
irreversibly inject particles into the system near the en-
ergy (per particle) of the target state. As long as the
target state has good wavefunction overlap with the ini-
tial state (e.g. the vacuum N = 0) and locally injected
particles, the system will be continuously filled up to the
target state, at which point further addition of particles
is energetically suppressed by ∆comp. Generically, the in-
jected particles will order in the strongly correlated phase
under the influence of the underlying coherent interac-
tions, geometries or topological properties present in the
many-body system. Population of other excited states
is highly suppressed by spectral gaps, and further made

short-lived by engineering an energy dependent loss that
couples only excited manifolds to the environment. The
balance of particle-injection and loss that is built into
the system provides the autonomous feedback that pop-
ulates the target many-body state, stabilizing it against
intrinsic photon loss or accidental excitation.

We realize irreversible particle insertion by coherent
injection of pairs of particles into a “collider”, in which
they undergo elastic collisions wherein one particle dis-
sipates into an engineered cold reservoir while the other
enters the many-body system; loss of the former par-
ticle makes this otherwise coherent process irreversible,
permanently inserting the latter into the system. Prior
experiments demonstrating “optical pumping” into spec-
trally resolved few-body states [34] relied upon excited-
state symmetry to achieve state-dependent dissipation;
here we employ energy-dependent photon loss to shed
entropy, a new approach with broad applicability.

In Sec. I, we introduce and characterize the photonic
Bose-Hubbard circuit; in Sec. II we describe and explore
an isolated dissipative stabilizer for a single lattice site;
finally, in Sec. III we couple the stabilizer to the Bose-
Hubbard circuit, realize the stabilization of a Mott in-
sulating phase, and investigate the fate of defects in the
stabilized Mott phase.

I. BUILDING A BOSE-HUBBARD CIRCUIT

Figure 2a shows our circuit, realizing a one-
dimensional Bose-Hubbard lattice for microwave pho-
tons, with a Hamiltonian given by:

HBH = −
∑
<ij>

Jija
†
iaj +

U

2

∑
i

ni(ni − 1)−
∑
i

µini

Here a†i is the bosonic creation operator for a photon
on site i, Jij is the nearest neighbor tunneling rate, U
is the on-site interaction, and µi is the local site energy.
An array of eight transmon qubits [35] constitute the lat-
tice sites of the one-dimensional lattice. Each transmon
acts as a non-linear resonator, where a Josephson junc-
tion acts as a non-linear inductor with Josephson energy
EJ , in parallel with a cross-shaped metal capacitor with
charging energy EC = e2/2CΣ, where e is the electron
charge and CΣ the total capacitance of the transmon.
The lattice site has a frequency for adding only one pho-
ton of ω01 ≈

√
8EJEC . Adding a second photon requires

a different amount of energy given by the anharmonic-
ity of the transmon U = ω12 − ω01 ≈ −EC . Thus U
is the effective two-body on-site interaction for photons
on a lattice-site. By using tunable transmons where two
junctions form a SQUID loop, we control the effective
EJ and thus the site energy by varying the magnetic flux
through the loop, achieved via currents applied to indi-
vidual galvanically coupled flux-bias lines. Neighboring
lattice sites are capacitively coupled to one another, pro-
ducing fixed nearest neighbor tunneling Jij .
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FIG. 2. Building a Bose-Hubbard lattice in supercon-
ducting circuits. (a) The circuit lattice Optical image
of the sample, showing an array of superconducting trans-
mon qubits (yellow, Q1-Q8) that constitute the lattice sites
of the Bose-Hubbard chain. Capacitive coupling between
qubits leads to nearest neighbor tunneling J , while the trans-
mon anharmonicity gives the on-site interaction U . Lattice-
site frequencies are dynamically tunable by independent flux
bias lines. Individual readout resonators (green) enable site-
resolved occupancy readout via a common transmission line.
Additionally, site Q1 is tunnel coupled to a lossy resonator
(red) that acts as the cold reservoir for the dissipative sta-
bilization. Charge excitation of the lattice sites is realized
by driving via the readout transmission line, and a separate
stabilization drive line (blue) couples only to site Q1. In-
set: Close-up SEM image of the transmon qubit, showing
the bottom of the cross shaped capacitor pad and the SQUID
loop. For details of the sample parameters and fabrication,
see SI A. (b) Energy scales The measured on-site interac-
tions U , nearest-neighbor tunneling rates J , and single photon
loss rates Γ1 of all lattice sites, demonstrating a highly coher-
ent, low-disorder Bose-Hubbard lattice in the strongly inter-
acting regime. (c) Lattice illustration The circuit sample
corresponds to a coherent Bose-Hubbard chain (light shade),
tunnel coupled at one end to the dissipative stabilizer (darker
shade). Shown here is a particular implementation of the sta-
bilizer using one transmon (blue) and the reservoir (red).

For readout of lattice occupancy, each site (transmon)
is capacitively coupled to an off-resonant coplanar waveg-
uide readout resonator. This enables site-by-site readout
of photon number occupation via the dispersive shift of
that site’s readout resonator. Readout resonator frequen-
cies span 200 MHz around 6.3 GHz. They are capacitively
coupled to a common transmission line, allowing simul-
taneous readout of multiple lattice sites and thereby site-
resolved microscopy of the lattice. Main contributions to
the readout uncertainty are Landau-Zener transfers be-
tween neighboring sites during the ramp to the readout
energy, and errors from the dispersive readout (SI. E).
This readout transmission line also enables charge exci-
tation of all lattice sites.

Site Q1, at one end of the lattice, is coupled to an-
other coplanar waveguide resonator which serves as a nar-
row band reservoir (R) used for the dissipative stabiliza-
tion. The reservoir is tunnel-coupled to Q1 with JR1 =
2π×16.3 MHz and has a linewidth κR = 2π×9.5 MHz ob-
tained by coupling to the 50 Ω environment of the readout
transmission line. An additional excitation line permits
direct charge driving of Q1 for the dissipative stabiliza-
tion.

The site energies are characterized through both qubit
pump-probe spectroscopy and Ramsey interference ex-
periments (see SI F). We employ transmon qubits with
a negative anharmonicity U ≈ 2π × −255 MHz (ex-
cept site Q4 which has U ≈ 2π × −158 MHz due to
a fabrication defect) corresponding to strong attractive
interactions, and an on-site frequency tuning range of
ω01 ∼ 2π × (3.5 − 6.0) GHz with a tuning bandwidth
of 250 MHz. Tunneling rates are measured by observing
population oscillation in isolated double wells of neigh-
boring lattice sites (see SI F 2 a); we measure nearly-
uniform tunneling rates of ≈ 2π × 6.25 MHz for J23 to
J78; J12 = 2π×12.5 MHz was chosen to optimize the per-
formance of the dissipative stabilizer. Beyond-nearest-
neighbor-tunneling due to residual capacitance between
qubits is suppressed by an order of magnitude. The
excited-state structure of the transmon gives rise to ef-
fective on-site multi-body interaction terms that are ir-
relevant for experiments in this work, where the on-site
occupancies are predominantly confined to n = 0, 1, 2.

We measure single photon relaxation times T1 ∼ 30µs
and dephasing times T ∗2 ∼ 3µs of all lattice sites using
standard pump-probe and Ramsey sequences (see SI F 1),
corresponding to a single photon loss rate of Γ1 = 1/T1 ∼
2π × 5 kHz and on-site frequency fluctuation Γφ ∼ 2π ×
50 kHz. We have thus realized a highly coherent photonic
Bose-Hubbard lattice in the strongly interacting regime
|U | � J � Γ1,Γφ, as shown in Fig. 2b.

II. DISSIPATIVE STABILIZATION OF A
SINGLE LATTICE SITE

Before examining the more complicated challenge of
stabilizing a Bose-Hubbard chain, we consider the follow-



4

J

u

S      R

u

Ωd

Ωd

κ
u
2

Q1

R

u

Co-Tunneling

Ωd

Ωd

∆
∆

S      C       R

Q2 Q1

κR

a.

d.

 one transmon scheme

 two transmon scheme

b.

e.

ω01

ω12

ω02

2

S - stabilized site
R - reservoir site

S - stabilized site
C - collision site
R - reservoir site

ω01

ω01+∆

ω01+2∆

P1
1.0

0.0

0.5

1.0

0.0

0.5

P1

c.

f.

S

S

S

S

S

S

(i) (ii)

(i) (ii)

FIG. 3. Dissipative stabilization of a single lattice site. To stabilize the population of a single lattice site, we explore
two different approaches: (a) One transmon scheme: Making use of the on-site interaction, we charge-drive the 2-photon
transition from n = 0 to n = 2 at frequency ωd = ω02/2, off resonant from the n = 1 state by U/2. The n = 1 to n = 2
transition is resonantly coupled to a lossy site (reservoir) at frequency ωr = ω21 to enhance Γ2→1. This causes the stabilized site
to always return back to the n = 1 state. (d) Two transmon scheme: Two transmon sites and the lossy site are detuned in
a Wannier-Stark ladder configuration to stabilize a single lattice site. Charge-driving resonantly at the energy of the collision
site coherently injects pairs of photons, which collide elastically and split, with one going into the stablized site and the other
to the reservoir. When the photon in the reservoir dissipates, the stabilized site remains in the n = 1 state. (b)(e) Single site
stabilizer fidelity. (i) The stabilizer fidelity P1 is measured as a function of the driving frequency and driving strength after
a driving duration of 3µs. The highest observed stabilizer n = 1 fidelities are 0.81(±0.01) for the one transmon scheme, and
0.89(+0.04/−0.01) for the two transmon scheme, limited predominantly by finite thermal population in the reservoir. In (ii)
we plot the fidelities at the optimal Ωd and compare to numerics, showing quantitative agreement. (c)(f) Stabilizer filling
dynamics. We measure the on-site occupancy of the stabilized site as a function of the duration of stabilization drive, at the
optimal driving parameters (indicated as stars and arrows in (b)(e)). The non-zero P1 at t = 0 is a result of the equilibrium
qubit temperature. All data points in the paper are averages of ∼ (5000 − 8000) independent runs of the experiment, with
typical errorbars in stabilization fidelity near the optimal parameter-regime of (+2/−1)% (SI. E).

ing simpler question: how do we stabilize a single lattice
site with exactly one photon in the presence of intrin-
sic single photon loss? A continuous coherent drive at
ω01 can at best stabilize the site with an average single-
excitation probability P1 = 0.5 in the steady state, where
the n = 2 state remains un-populated due to strong in-
teractions making the drive off-resonant for 1 → 2 tran-
sition. To stabilize in the n = 1 state, one could imple-
ment a discrete feedback scheme where the state of the
site is continuously monitored and whenever the occu-
pation decays from n = 1 to n = 0, a resonant π pulse
injects a single photon into the site. Here we explore ways
to implement such stabilization autonomously, using an

engineered reservoir in place of active classical feedback.

This idea is akin to inverting atoms in a laser or optical
pumping schemes prevalent in AMO experiments: a co-
herent optical field continuously drives an atom from the
ground state to a short-lived excited state that rapidly
decays to a long-lived target state. In the transmon, this
means making one photon significantly shorter lived than
the other; to this end it is helpful to be able to distinguish
them, e.g. by different spatial wavefunctions or different
energies. We take the latter route, harnessing on-site
interactions and elastic site-changing collisions to allow
the coherent field to add pairs of photons with different
energies, and the narrow band reservoir to provide an en-
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ergy dependent loss into which the lattice-site’s entropy
is shed, stabilizing the site into the n = 1 state.

We implement two different schemes for stabilizing
a single lattice site. In the “one transmon” scheme
(Fig. 3a), akin to [36], we make use of the on-site n = 2
state and drive a 2-photon transition from n = 0 to n = 2
at frequency ωd = (ω01 + ω12)/2 and single photon Rabi
rate Ωd, off resonant from the n = 1 state by U/2. The
2 → 1 photon loss is realized by coupling the stabilized
site to the lossy site (R) at frequency ωR = ω21. The
optimal stabilization fidelity P1 (probability of having
on-site photon occupancy n = 1) arises from a compe-
tition between the coherent pumping rate and various
loss processes: at low pumping rates, the photons are
not injected fast enough to compete with the 1-photon
loss Γ1; at high pumping rates, the lossy site cannot shed
the excess photons fast enough and the fidelity is limited
by off-resonant coherent admixtures of zero- and two-
photon states. The theoretically predicted single site in-
fidelity (1 − P1) for optimal lossy channel and driving
parameters scales as (Γ1/U)1/2 [30]. Except for the level
diagrams in Fig. 3ab, illustrations in figures are drawn
with positive U for visual clarity. The sign of U does not
affect the physics of the experiments described in this pa-
per, as the engineered reservoir is narrow-band and the
lattice remains in the strongly interacting regime.

The measured steady-state stabilization fidelity using
the “one transmon” scheme is shown in Fig. 3b as a func-
tion of the driving frequency and strength. Driving the
stabilized site resonantly at ωd ≈ ω01 = 2π × 4.738 GHz
gives an on-site population that saturates at P1 ≤ 0.5 as
expected. Near ωd = (ω01 + ω12)/2 = 2π × 4.610 GHz
we observe the single site stabilization and the fidelity
increases with driving strength until reaching an opti-
mal value P1 = 0.81(±0.01) at Ωd = 2π × 28 MHz af-
ter which the fidelity drops. The split peaks result from
resonant coupling between the lossy resonator and the
stabilized site, ωR = ω12, giving a frequency splitting of√

2JR1 ≈ 2π×23 MHz when driving the 2-photon transi-
tion. The measured data at the optimal Ωd is plotted in
the vertical panel, showing quantitative agreement with a
parameter-free numerical model (SI. G 1). The observed
stabilization fidelity is primarily limited by thermal pop-
ulation in the cold-reservoir nRth = 0.075 which re-enter
the stabilized site (SI. F 4). In Fig. 3c we show the filling
dynamics of the stabilization process, plotting on-site oc-
cupancy of the stabilized site versus the duration of the
stabilization drive with the optimal driving parameters
(star, arrow in Fig. 3b). The single site is filled in about
0.8µs (with a fitted exponential time constant of 0.19µs),
in agreement with the expected refilling rate Ω2

d/(U/2)
and numerical simulations. The finite P1 at time t = 0
arises from finite qubit temperature in the absence of
driving.

In the “two transmon” scheme, we employ two trans-
mon lattice sites (the “stabilized site (S )” and the “col-
lision site (C )”) and the lossy resonator (the “reservoir
R”) in a Wannier-Stark ladder configuration (Fig. 3d).

The middle collision site is placed energetically between
the stabilized and the reservoir sites, detuned from each
by ∆, allowing us to drive at the collision site fre-
quency ωC01 and induce elastic collisions that put one
photon each into the stabilized site and lossy resonator
(2 × ωC01 → ωS01 + ωR). The photon in the reservoir site
is quickly lost, leaving the stabilized site in the n = 1
state. This scheme resembles evaporative cooling em-
ployed in ultracold atom experiments where an RF knife
in a magnetic trap provides an energy-dependent loss at
the edge of the quantum gas, elastic collisions cause one
particle to gain energy and spill out of the trap, while
the other is cooled [3]. Compared to the “one transmon”
scheme, the “two transmon” scheme adds an additional
degree of freedom, making it possible to separate the
effective pumping rate from the detuning, allowing for
better stabilization performance where the optimal infi-
delity scales as (Γ1/U)2/3 [30]. In addition, the stabilized
site is not driven directly in the “two transmon” scheme,
thus avoiding infidelities from off-resonant population of
higher transmon levels.

The steady state fidelity of the stabilized site in the
“two transmon” scheme is shown in Fig. 3e with ∆ =
−2π × 100 MHz chosen for optimal fidelity. The di-
rect resonant driving at ωd = ωC01 = 2π × 4.683 GHz
is still visible with signs of coherent oscillations around
P1 ∼ 0.5. The expected stabilization peak at the colli-
sion site frequency ωd = ωC01 = ωS01 + ∆ is accompanied
by other features with high P1 from higher-order collision
processes [37]. For example, the peak appearing near
(ωS01 + ∆/2) corresponds to a 2-photon process that pop-
ulates the stabilized site and the collision site, the latter
now serving as the lossy channel due to its coupling to
the lossy resonator site. The feature close to (ωS01+3∆/2)
arises from fourth-order population of the stabilized site
in n = 1 with 4× ωd = ωS01 + 3× ωR. Both features ex-
perience substantial drive-power dependent Stark shifts.
The measured optimal single site stabilizer fidelity is
P1 = 0.89(+0.04/−0.01) at Ωd = 2π × 60 MHz, ωd =
2π × 4.555 GHz. On top of this broad stabilization fea-
ture, a sharp dip in fidelity occurs at ωd = ωS01 +U/2 re-
sulting from quantum interference between the intended
process and the direct “one transmon” process on the
stabilized site. Both the measured steady-state fidelity
and the stabilizer dynamics (Fig. 3f) are in quantita-
tive agreement with numerical simulation, with the high-
est observed fidelity primarily limited by reservoir ther-
mal population. Notice that the “two transmon” scheme
yields higher fidelities and does so over a broader param-
eter range (for example the ωd ∼ ωS01 + ∆ peak at higher
Ωd); it is thus better suited to stabilize many-body states
as described in the next section, where rapid refilling over
a finite density of states is required.
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FIG. 4. Dissipative stabilization of a Mott insulator. (a) Schematics: Many-body spectrum of a strongly interacting
Bose-Hubbard chain showing bands seperated by the interaction U . The continuous coherent driving provides particle pairs
that undergo elastic collisions where one dissipates into the reservoir, and the other irreversibly injected into the lowest band
of the lattice (blue shade). The lattice is filled up to and stabilized in the n = 1 Mott state (gray arrow) which is both gapped
(∆mb) and incompressible (∆comp). The reservoir also acts as an dissipation channel for any unwanted excitations to higher
energy states (red shade). (b) Mott fidelity: We take the stabilizer in the “two transmon scheme” and resonantly couple it
to the end of a homogeneous 5 site Bose-Hubbard chain. The measured steady state P1 averaged over sites Q2 to Q7 is shown
as a function of the stabilization drive frequency and drive strength, displaying same qualitative features as when stabilizing
a single site (Fig. 3e). We achieve a maximum average Mott fidelity of 0.88(+0.03/−0.01) when driving on resonance at the
collision site with Ωd = 2π × 95 MHz (indicated by star). (c) Mott filling dynamics: Starting with an empty lattice, we
plot P1 on each site as a function of the stabilization drive duration at the optimal driving parameters. (b) and (c) share
the same colorbar scale. At short times, particles are injected continuously into the lattice from the stabilizer and display a
light-cone-like ballistic-transport of population across the lattice, and a single reflection off of the far end of the lattice. The
steady state Mott filling is reached in ∼ 0.8µs.

III. STABILIZATION OF A MOTT INSULATOR

Having demonstrated the ability to stabilize a lattice
site with a single photon, we now employ it to stabilize
many-body states in the Bose-Hubbard chain. The single
stabilized site acts like a spectrally narrow-band photon
source that is continuously replenished. Photons from it
sequentially tunnel into and gradually fill up the many-
body system until adding further photons requires an
energy different from that of the source, resulting in an
ordered many-body state in the Hubbard chain.

In order for this stabilization method to work, the tar-
get phase must satisfy certain conditions, illustrated for
the current system in Fig. 4a. The phase should be in-
compressible with respect to particle addition [30]: Once
the target state is reached, the stabilizer should be un-
able to inject additional photons into the system; at the
same time, when a photon is lost from the target state
(due to decay into the environment), the stabilizer must
refill the hole defect efficiently. This requires that the
hole- and particle- excitation spectra of the target state
be spectrally resolved (with gap ∼ ∆comp). In addition,
when refilling a hole, we must avoid driving the system
into excited states with the same number of photons as
the target state– requiring the target phase to exhibit
a many-body gap ∆mb. The stabilizer, as a continuous
photon source, thus needs to be narrow-band compared

to both the many-body gap and the gap between the hole
states and the particle states, but sufficiently broad-band
to spectroscopically address all hole states. The perfor-
mance of the many-body stabilizer is then determined by
how efficiently the hole defects in the many-body state
can be refilled– a combined effect of the repumping rate
of the single site stabilizer at energy εk (where k is the
quasi-momentum of the hole) and the wavefunction over-
lap between the defect state and the stabilizer site.

We tunnel-couple the demonstrated single site stabi-
lizer to one end of the Bose-Hubbard chain, and attempt
to stabilize the n = 1 Mott insulator of photons. The
Mott state is a gapped ground state [38] that satisfies
the incompressibility requirements [39]. The many-body
gap is set by the cost to create doublon-hole excitations
on top of the Mott state ≈ U . Particle-like excitations
are gapped by the strong interaction (≈ U for n = 1
Mott state), while the hole excitations follow the sin-
gle particle dispersion with energies lying in a band of
|εk| ≤ 2J in the one-dimensional lattice, providing clear
spectral separation in the Mott limit (|U | � J). For
a homogeneous lattice, all hole eigenstates are delocal-
ized across the lattice, making it possible to employ a
single stabilizer at one end of the chain. The amplitude
of the defect state wavefunctions at the stabilizer can
be adjusted via the coupling between the chain and the
stabilizer Jc. Here we attach an additional 5 site chain
(Q3−Q7) to a “two transmon” stabilizer which stabilizes
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FIG. 5. Dynamics of a hole defect in the Mott insu-
lator. (a) Schematics To explore thermalization dynamics
near equilibrium, we prepare a Mott insulator with a local-
ized hole defect at the end of the lattice opposite the stabilizer
and observe the time dynamics of the chain. (b) We plot the
excess hole density Ph as a function of evolution time in the
absence of the stabilization drive. The hole propagates on top
of the otherwise filled Mott insulator as the coherent quan-
tum walk of a free quasi-particle. (c) If the stabilization drive
is on during the evolution, the hole shows the same ballistic
propagation in the lattice until it reaches the stabilizer, where
the defect is efficiently refilled.

Q2. All lattice sites are tuned to the same energy as Q2.
The coupling between the stabilizer and the rest of the
chain is Jc ≈ Jchain ∼ 2π × 6.25 MHz.

In Fig. 4b, we plot the measured steady state Mott fi-
delity (〈P1〉, chain-averaged over sites Q2−Q7) as a func-
tion of the stabilization drive frequency and strength, af-
ter a driving duration of 5µs. The optimal Mott fidelity of
0.88(+0.03/−0.01) is achieved by driving at ωd = ω01+∆
with Ωd = 2π × 96 MHz, demonstrating a dissipatively
stabilized photonic Mott insulator in which the on-site
number fluctuations are strongly suppressed. The ob-
served defects within the chain are predominantly holes
(P0), with very low doublon probabilities (P2). Figure 4b
shows qualitatively the same features as the single site
stabilization in Fig. 3d. Near ωd ≈ ωC01, the single par-
ticle stabilizer performance is robust over variations in
both (1) drive detuning, which gives good energetic over-
lap with the hole defect states of the Mott phase that
span a frequency range of 4J ≈ 2π × 25 MHz; and (2)
drive strength, which provides the high repumping rates
necessary to fill the whole lattice without sacrificing sta-
bilizer fidelity.

In Fig. 4c we plot the time dynamics of all lattice sites
in the Hubbard chain as the Mott state is filled from vac-
uum, at the optimal driving parameter (indicated with
yellow star in Fig. 4b.). The initial filling dynamics reveal
near-ballistic propagation of injected photons after they

enter the lattice from the stabilizer, consistent with the
dispersion of a localized wavepacket continuously injected
at the stabilized site that undergoes quantum tunneling
in the lattice.

Finally, we examine the near-equilibrium dynamics of
the stabilized chain by preparing a single defect and
watching it refill (Fig. 5). We begin by preparing the dis-
sipatively stabilized Mott insulator in Q2 − Q7 with Q8

sufficiently energetically detuned that it remains empty.
Q8 is then rapidly tuned to resonance with the rest of the
lattice, and the population of holes (excess n = 0 popula-
tion compared to the steady state Mott, Ph = P0−PMott

0 )
across the chain is measured after a variable evolution
time. In the absence of the stabilization-drive during the
evolution of the hole (Fig. 5b), we observe the coherent
propagation of the hole defect (consistent with theory, see
SI G 3). The wavefront traverses the lattice at a speed of
2J ≈ 78 sites/µs at short times, while at longer times we
observe complex structures emerge due to coherent inter-
ference of multiple reflections off the edges of the lattice.
On the other hand, when the stabilization drive remains
on during the evolution of the hole defect (Fig. 5c), we
observe similar initial ballistic propagation until the de-
fect reaches the stabilizer, where the hole defect is imme-
diately filled. Note that the many-body filling front in
Fig. 4c is essentially as fast as the single hole propaga-
tion shown in Fig. 5c.

IV. CONCLUSIONS

We have constructed a Bose-Hubbard lattice for mi-
crowave photons in superconducting circuits. Transmon
qubits serve as individual lattice sites where the anhar-
monicity of the qubits provides the strong on-site in-
teraction, and capacitive coupling between qubits leads
to fixed nearest-neighbor tunneling. The long coherence
times of the qubits, together with the precise dynamical
control of their transition frequencies, make this device
an ideal platform for exploring quantum materials. Us-
ing readout resonators dispersively coupled to each lat-
tice site, we achieve time- and site- resolved detection
of the lattice occupancy. Frequency multiplexed simul-
taneous readout of multiple lattice sites [40] could be
implemented in future experiments to enable direct mea-
surement of entanglement and emergence of many-body
correlations.

We further demonstrate a dissipative scheme to pop-
ulate and stabilize gapped, incompressible phases of
strongly interacting photons– employed here to realize
the first Mott insulator of photons. The combination
of coherent driving and engineered dissipation creates
a tailored environment which continuously replenishes
the many-body system with photons that order into a
strongly correlated phase and acts as an entropy dump
for any excitation on top of the target phase.

This platform opens numerous fascinating avenues of
inquiry: What is the optimal distribution of engineered
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reservoirs? How does this depend upon the excitation
spectrum of the isolated model under consideration?
How do the equilibrium properties of the dissipatively
stabilized system relate to those of the isolated system?
How do higher-order correlations thermalize? What are
the thermodynamic figures of merit for the reservoir and
its coupling to the system?

Finally, our results provide an exciting path towards
topologically ordered matter using related tools, e.g.
the creation of fractional quantum Hall states of pho-
tons [41, 42] in recently realized low-loss microwave
Chern insulator lattices [19]. The unique ability in circuit
models to realize exotic real-space connectivity [43] fur-
ther suggests the possibility of exploration of topological
fluids on reconfigurable higher-genus surfaces– a direct
route to anyonic braiding [44].
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[13] Salathé, Y. et al. Digital quantum simulation of spin
models with circuit quantum electrodynamics. Physical
Review X 5, 021027 (2015).

[14] Barends, R. et al. Digital quantum simulation of
fermionic models with a superconducting circuit. Nature
Communications 6, 7654 (2015).

[15] O’Malley, P. et al. Scalable quantum simulation of molec-
ular energies. Physical Review X 6 (2016).

[16] Kandala, A. et al. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets. Nature 549, 242 (2017).

[17] Underwood, D. L., Shanks, W. E., Koch, J. & Houck,
A. A. Low-disorder microwave cavity lattices for quan-
tum simulation with photons. Physical Review A 86,
023837 (2012).

[18] Roushan, P. et al. Chiral ground-state currents of in-
teracting photons in a synthetic magnetic field. Nature
Physics 13, 146–151 (2017).

[19] Owens, C. et al. Quarter-flux Hofstadter lattice in a
qubit-compatible microwave cavity array. Physical Re-
view A 97, 013818 (2018).

[20] Raftery, J., Sadri, D., Schmidt, S., Türeci, H. E. &
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SUPPLEMENTARY INFORMATION

Appendix A: Device Fabrication and Parameters

The superconducting circuit device is fabricated in a two step process: (1) Optical lithography defines the capacitor
pads for the transmon qubits, co-planer waveguide resonators, all control and input/output lines (flux biases, charge
drive, readout transmission line) and the perforated ground plane; (2) E-beam lithography defines the dc SQUID
loops and forms the Josephson junctions for the transmons.

The base layer is fabricated from 150 nm of Niobium, e-beam evaporated (at 0.9 nm/s) onto 450µm thick c-plane
sapphire substrate that has been annealed at 1500 ℃ for 1.5 hrs. Optical lithography is performed with a direct
pattern writer (Heidelberg MLA 150), followed by fluorine etching (SF6/CHF3/Ar) in a PlasmaTherm ICP etcher.
This defines all patterns on the sample except the Josephson junctions and traces that form the SQUID loops.

Next we perform e-beam lithography using MMA-PMMA bilayer resist, written on a 30 keV FEI Quanta system
with NPGS pattern generator. The Al/AlOx/Al junctions are e-beam evaporated in an angled evaporator (Plassys
MEB550). Before Al deposition, we use Ar ion milling on the exposed Nb to etch away the Nb oxide layer in order
to ensure electrical contact between the Nb and Al layers. The first layer of Al (60 nm, deposited at 0.1 nm/s) is
evaporated at an angle of 30◦ to normal, followed by static oxidation in O2 for 12 minutes at 20 mBar. The second
layer of Al (150 nm, 0.1 nm/s) is then evaporated at 30◦ to normal but orthogonal to the first layer in the substrate
plane to form the junctions at the cross of the two layers. In order to reduce sensitivity to flux noise while retaining
sufficient frequency tunability, the transmons have two asymmetric square-shaped junctions with sizes of 110 nm and
180 nm. The SQUID loop has a dimension of 10µm× 15µm.

The device is then wirebonded and mounted to a multilayer copper PCB with microwave launchers. The device
chip is enclosed by a pocketed OFHC copper fixture which has been designed to eliminate all spurious microwave
modes near or below the frequencies of interest.

The transmons have cross-shaped capacitors and total capacitance CΣ with EC ∼ 2π × 250 MHz and flux tunable
EJ ∼ 2π×(6−18) GHz, corresponding to a tunable frequency of ω01 ∼ 2π×(3.5−6.0) GHz. The capacitance between
the neighboring transmons c sets the nearest neighbor tunneling J ≈ ω01c/2CΣ. The lossy resonator, which serves as
the reservoir for the dissipative stabilization, is a λ/2 coplaner waveguide resonator at ωR = 2π × 4.483 GHz, tunnel
coupled to the end of the lattice (Q1) via capacitive coupling to the transmon capacitor pad. It has a linewidth of
κR = 2π × 9.5 MHz due to coupling of the other end of the resonator to the 50 Ω terminated environment of the
readout transmission line (via an inter-digitated capacitor).

The readout resonators for the individual qubits are λ/2 coplaner waveguide resonators staggered in frequency with
a spread of 200 MHz around 6.35 GHz, coupled to the common readout transmission line via parallel capacitors. The
flux bias lines are galvanically coupled to the SQUID loops with a mutual inductance of ∼ 0.2 pH. Characterization
of the crosstalk between flux lines is detailed in SI. C.

The stabilization drive line is coupled to Q1 with a capacitance of ≈ 0.04 fF, while residual capacitive coupling to the
next site (Q2) is suppressed by a factor of ≥ 10. The physical proximity of the stabilization drive line to the reservoir
resonator on the chip leads to some direct coupling between the two; this coupling term has negligible impact on
stabilizer performance since coherent population of the reservoir is strongly suppressed by the large detuning between
drive and reservoir. A detailed characterization of the Bose-Hubbard parameters and the lattice readout is provided
in the sections below, with a summary of the measured parameters listed in Table S3.

Appendix B: Fridge and Microwave Setup

The packaged device is mounted using a machined high purity copper post to the base of a Bluefors dilution
refrigerator at a nominal temperature of 20 mK. To provide additional shielding to radiation and external magnetic
fields, the sample is enclosed in a thin high-purity copper shim shield, followed by a high-purity superconducting lead
shield, and then two layers of cryo-compatible mu-metal shields (innermost to outermost). All shields are heat-sunk
to the fridge base.

Room temperature connections to the readout transmission line and the stabilization drive have 20 dB attenuation
at each of the 4 K/100 mK/20 mK stages of the fridge, and Eccosorb (CRS-117) filters at base to block IR radiation.
The readout line is also used to simultaneously charge drive all the qubits. The signal from output of the readout
transmission line goes through two microwave isolators at base (50 dB total isolation) prior to connection to a cryogenic
HEMT amplifier (Low Noise Factory) at 4 K via a superconducting NbTi coax line.

There are a total of 7 on-chip flux lines attached to sites Q1 to Q7, allowing both dc and fast tuning of the qubit
frequencies. Site Q8 furthest away from the thermalizer does not have a on-chip flux line. An external dc coil (20
turn OFHC copper) is mounted ∼ 5 mm above the sample chip that allows simultaneous dc tuning of all qubits, and
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together with the 7 on-chip lines, provides individual dc frequency tuning of all 8 qubits. The DC flux bias and fast
flux bias are filtered separately before combined on bias-tees at base. The bias-tees allow pass-through of fast flux
signal down to dc. The dc flux biases are generated by constant voltages sources (AD5780 DAC evaluation boards, 18
bit resolution, output range ±10 V). The fast flux tuning pulses are generated with PXDAC4800 Arbitrary Waveform
Generators (AWGs) running at 600 MS/s and filtered to dc-250 MHz.

All microwave signals for readout and charge drives are directly synthesized with a 64 GS/s Keysight M8195 AWG.
The readout input signal (at ωRF = ωread) is attenuated and combined with the charge drive and sent into the readout
transmission line. The stabilization drive is amplified and sent into the fridge separately. A fourth channel is used
to generate simultaneously the local oscillator at ωLO = ωread + 50 MHz and a phase reference at 80 MHz synced to
both the readout RF and LO. The readout signal from the fridge goes through a low noise Miteq amplifier, filtered
with a tunable 30 MHz bandwidth YIG filter, and further amplified. It is then mixed on a Marki IQ mixer with the
readout LO and down-converted to ∼ 50 MHz. This heterodyne signal is further amplified and then recorded on an
AlazarTech 1 Gs/s digitizer. We then perform “digital homodyne” to extract the two quadrature signals by extracting
the amplitude of the sine and cosine components of the recorded trace. The 80 MHz signal is recorded simultaneously
on the second channel of the digitizer and used as phase reference for the down converted heterodyne signal. This is
to mitigate a small random timing jitter (∼ 1 − 2 ns) between the digital trigger and the start of the Alazar card’s
acquisition.

All instruments for signal pulses and data acquisition are triggered with a PulseBlaster digital pulse generator, and
clocked with a Rubidium atomic reference (SRS FS725).

The cryogenic microwave setup and the wiring of room temperature control/readout instrumentation are shown in
Fig. S1. For clarity, connections between the control PC and the various instruments are omitted.

Appendix C: Control of On-site Energies

1. Flux tuning and crosstalk calibration

The lattice experiments require precise and rapid tuning of the on-site frequency (the transmon qubit ω01) for each
lattice site. The dc flux bias lines are used to statically tune the sites to a target frequency, while the fast flux bias
lines are used to provide additional dynamical tuning with nanosecond precision.

The on-site frequencies ω01 are controlled by currents in the flux bias lines. In general, there is substantial cross-talk
between flux-bias lines: the amount of flux enclosed in the SQUID loop of each qubit φi is affected by currents in all
flux bias lines Ij . To change the on-site frequency of each lattice site independently, we must calibrate the crosstalk
between all flux lines and all qubits. We assume that the flux crosstalk is linear in the applied currents, such that:

dφi =

8∑
j=1

∂φi
∂Ij

dIj

To obtain the crosstalk matrix Mij = ∂φi/∂Ij , we park Qi at a frequency ω0
i on the flux slope where the qubit

frequency varies linearly with flux for small changes in flux. We then measure the change in frequency ∂ωi/∂Ij as
the bias current in each of the flux lines Ij is varied. After dividing out a constant reflecting the flux slope at this
particular qubit frequency ∂ωi/∂φi|ω0

i
, we obtain the ith row of the crosstalk matrix ∂φi/∂Ij . These measurements

are repeated for all qubits versus changes in all flux line currents. The individual qubit frequencies for the crosstalk
calibration are measured by Ramsey interferometry.

The eigenvectors of the inverted crosstalk matrix M−1
ij then provide the linear combinations of flux currents that

independently tune each qubit, enabling us to calculate the bias currents necessary to bring all qubits to any desired
values of φi. Finally, the frequency ωi to flux φi conversion for each qubit can be obtained by either fitting the
measured qubit spectra versus flux ωi = ωi(φi) to a Jaynes-Cummings model, or by measuring a linear slope if only
tuning the qubits over a small frequency range close to the linear part of the flux slope.

We show the measured dc flux crosstalk matrix in Table S1. Row 8 corresponds to flux tuning from the external
dc coil, which tunes all qubits with similar flux to current slopes; rows 1-7 are on-chip flux lines proximal to Q1 −Q7

respectively. The columns of the matrix have been been normalized to the diagonal elements to show the relative
magnitude of the cross talks. In Table S2, we show the fast dc flux crosstalk matrix for the on-chip flux lines. These
values are measured and accurate for fast flux pulses of length as long as 20µs, longer than all relevant experimental
sequences in this work.

From the measurements, the fast flux crosstalk is significantly smaller than the DC crosstalk. We attribute this to
the fact that the on-chip flux lines are individually grounded near each qubit which causes high freq (fast) flux signals
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∂φi/∂Ij (%)

i j 1 2 3 4 5 6 7

1 100.0 17.9 -1.8 -33.7 -41.2 -37.6 -27.4

2 22.4 100.0 0.8 -37.9 -41.9 -38.6 -28.6

3 26.3 24.0 100.0 -49.0 -51.2 -47.0 -30.4

4 17.2 16.8 9.0 100.0 -44.4 -37.0 -22.0

5 25.5 22.9 14.4 -39.9 100.0 -64.4 -30.9

6 15.8 16.7 12.3 -20.1 -41.9 100.0 -27.1

7 9.3 14.6 17.0 12.3 -15.4 -37.7 100.0

TABLE S1. Measured static dc flux crosstalk matrix.

∂φi/∂Ij (%)

i j 1 2 3 4 5 6 7

1 100.0 -2.1 -5.8 -3.5 -2.9 -2.6 -0.9

2 4.5 100.0 -5.1 -3.9 -3.2 -3.0 -0.8

3 4.4 4.6 100.0 -6.1 -4.2 -3.4 -0.9

4 6.3 6.0 6.7 100.0 -16.3 -8.2 -2.5

5 4.5 4.0 5.7 -2.5 100.0 -8.4 -1.4

6 3.1 3.0 5.6 -0.8 -2.3 100.0 -2.8

7 2.6 3.5 9.0 5.5 -0.8 -7.4 100.0

TABLE S2. Measured fast dc flux crosstalk matrix.

to reflect back into the flux lines and appear more “localized” for other qubits, compared to the DC biasing currents
which flow into the superconducting ground plane and may trace out peculiar routes as they try to follow a return
path of least impedance.

2. Time domain flux pulse shaping

a. Correcting flux pulse response

For dynamical tuning using the fast flux bias, we would like the individual sites to see precise flux pulse shapes (e.g.
a step function detuning with finite ramp). The fast flux pulses are generated with a 600 MS/s AWG (PXDAC4800),
and the various elements in the flux line circuit between the AWG and the transmon qubit lead to significant pulse
distortion. These elements include room temperature filters and electronics; cryogenic lines, attenuators and filters;
and the on-chip flux line that carries the flux bias signal from the RF connector to the vicinity of the transmon. For
practical purposes, these distortions are linear in the flux pulse amplitude. So by measuring the transfer function
of the linear response of the flux circuit, we can construct a deconvolution kernel applied to the AWG pulses to
compensate and correct for the flux pulse shape. We follow a procedure similar to that described in Ref. [45].

In our case, the main contribution of the flux pulse distortion comes from the effective low pass effect of the filters
and RF lines, and the contribution from the AWG ouput’s intrinsic distortion is relatively negligible. We measure the
rest of the distortion directly with time-resolved qubit spectroscopy: We apply a step flux pulse to the AWG output,
and measure the response of the qubit frequency to the step pulse as a function of time. The qubit charge excitation
pulse has a gaussian shape with σ = 20 ns truncated at ±2σ, and weak enough to only excite a fraction of the qubit.
By fitting the qubit spectrum at each time with a Lorentian, we obtain the instantaneous qubit frequency. For a
small flux step applied with the qubit frequency on a close to linear slope, the time resolved qubit frequency trace
gives the filtered step response seen by the qubit. The time resolution of the spectroscopy is limited by the length of
the excitation pulse to tens of ns.

The measured time-domain response is Fourier transformed to get the frequency-domain response. Because of the
finite resolution of the qubit spectroscopy, we keep only the low frequency response up to a cutoff fc ∼ 25 MHz,
which is then inverted and Fourier transformed back to obtain the time-domain kernel for pulse compensation. To
achieve compensated response at the qubit, the AWG output is then set to the target pulse shape convoluted with
the time-domain kernel. The cutoff fc insures that the high frequency response remains unaltered.

In Fig. S2, we show an example of the pulse compensation. The measured step response after compensation settles
to within < 0.5% in less than 100 ns.

b. Flux balancing pulse

Experimentally it’s been observed that the flux bias lines have residual responses to fast flux pulses at millisecond
or longer time scales, longer than the duration of an experiment cycle. Thus any non-zero net flux current applied
during the experiment sequence could lead to unwanted drifts of the qubit frequency as the experiment is continuously
run. To avoid such effects, we apply a flux balancing pulse at the end of each experimental run such that the net flux
currents applied to each flux line always remain zero.
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FIG. S2. Time domain pulse correction for fast flux biasing. The qubit frequency response after an applied step to
the fast flux bias is measured using time resolved qubit spectroscopy. Shown are results before (red) and after (blue) pulse
compensation.

c. Estimate short-time flux response

As discussed above, the procedure for fast flux pulse correction does not reveal information about the short-time
response of the flux lines, nor does the compensation we apply alter that short- time response. To estimate the initial
ramp speed after applying a step to the flux line, we use a Ramsey-type “qubit oscilloscope” [46].

We detect the qubit frequency response to a short square flux pulse (uncompensated), by placing the flux pulse in
between the two π/2 pulses of a Ramsey sequence and measure the extra accumulated qubit phase from the qubit
detuning. The delay between the π/2 pulses are kept long enough so that the qubit has time to return to the initial
frequency. The accumulated phase is measured as a function of the length of the square flux pulse, by fitting the
phase of the Ramsey fringes.

If the qubit detuning is linear with the flux pulse amplitude, then the accumulated phase will be linear in the
flux pulse length regardless of the shape of the flux circuit response (because the Ramsey pulses enclose both the
rising and falling edges of the pulse, and the filtered response at the two edges are identical with opposite signs).
Therefore to obtain information on the short-time flux response, the qubit detuning has to be a non-linear function of
the applied flux. We start the qubit at the flux insensitive lower sweet spot, so that the qubit detuning is quadratic
with the applied flux amplitude. We are mostly interested in the initial ramp speed, and the ramps at both edges
contribute significantly to the accumulated phase so we cannot simply take the derivative of the accumulated phase
to get the frequency response like in Ref. [46]. Instead we directly compare the measured accumulated phase to
numerical simulations. The square fast flux pulse from the AWG after all room temperature filtering has a smooth
ramp of 3ns, that we can fit well with a logistic function shown in Fig. S3(a). We assume that to lowest order, the
additional response of the cryogenic lines and filtering is a simple low pass filter with cutoff fc (and corresponding
characteristic time τ). We numerically integrate the expected accumulated phase for different fc, and compare with
measurement to extract an estimated fc ≈ 53 MHz (τ ∼ 3 ns) for our fast flux bias lines (Fig. S3(b)). The validity of
the method is checked by intentionally adding stronger room temperature low pass filters and observe good agreement
with measurement and simulation.

This estimated fast flux ramp shape at the qubit (shown in Fig. S3(a)) is used in Sec. E below to estimate the
readout errors from Landau-Zener crossing between neighboring sites as a result of the finite ramp speed.

Appendix D: Experiment sequence

We briefly describe the experimental sequence for a typical experiment: first the quantum many body state of
interest is prepared and time-evolved in the lattice (“lattice physics”); then the the state of the lattice is measured
(“detection”).

At the beginning of each experiment, all microwave signals are idle and the lattice is empty. Constant dc flux biases
tune the sites to near the lattice frequency, while the fast flux biases are applied additionally during the sequences to
achieve dynamical tuning of all sites.

To perform different lattice experiments, segments with different lattice detunings and drive pulses are concatenated
together for the “lattice physics.”. In Fig. S4 we illustrate a generic sequence: (i) first a stabilization drive is used
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(a) (b)

FIG. S3. Short time response of the fast flux. (a) The fast flux pulse response to a step at room temperature before
entering the fridge (blue) and at the qubit (orange) assuming a simple low pass from the cryogenic components with fc measured
in (b). (b) Accumulated qubit phase as a function of the flux pulse length, measured in a Ramsey type experiment. The bent
at short times is a result of the finite ramps of the flux response. From the measured data (blue) we extract the estimated low
pass fc. We also plot measurement and simulation when we apply additional low pass filtering at room temperature, showing
good agreement.

Dissipative stabilization Excitation Free evolution Jump Readout Fast flux balancing Idle

Experiment period = 250 µs

(3 - 5 µs) (10-100 ns) (0 - 1 µs) (5 ns) (1 µs) (few - 10 µs)

~ 4.6 
 GHz

~5-5.5
  GHz

~ 6.2-6.4 
    GHz

Lattice physics Detection

(i) (iii)(ii)

FIG. S4. Experimental sequence. We plot the timing of the various drive and flux control pulses for a typical experiment.

to dissipatively prepare a many-body state across the degenerate lattice; (ii) then one site is quickly (much faster
than 1/J) detuned from it’s neighbors and charge drive pulses are applied to put an individual excitation into the
spectrally isolated site; (iii) the detuned site is then brought back into resonance with the rest of the lattice and we
observe the dynamics of the many-body state by varying the time of the free evolution before the readout. During
step (ii), we typically detune all sites from their neighbors in order to “freeze” all the tunneling dynamics; more than
one excitations can be created either sequentially, or simultaneously by frequency multiplexed drive pulses via the
common charge-drive line.

At the end of the lattice evolution, all drive pulses are turned off, and the fast flux biases are “jumped” rapidly
(with maximum amplitude change and maximum bandwidth to achieve fastest ramp rate) to detune the measured
lattice site away from its neighbors, effectively freezing its on-site occupancy. The readout microwave pulse is then
applied for a duration of 1µs during which the output from the device is acquired using the heterodyne setup. After
the readout, the flux balancing pulses are applied with varying length (few µs) to null the net current flowing into
each flux line during the sequence. The details and error estimation of the lattice readout are described in the next
section.

The detuning ramps used during the “lattice physics” are typically 10−20 ns in duration, linear in the (uncorrected)
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FIG. S5. Qubit readout. The digitally-homodyned quadrature signals for the dispersive readout of site Q3. Each of the
6000 data point in the scatter plot corresponds to the time averaged signal of a single shot readout with the qubit initialized
in one of states n = 0, 1, 2. We choose readout frequencies ωfread = 2π× 6.43145 GHz (a) and ωgread = 2π× 6.43355 GHz (b) to
distinguish only state |0〉 or |2〉. Dots in the scatter plots indicate average signal of each state. The global phases have been
adjusted so that the desired projection is onto the horizontal axis. On the bottom we show histograms of the projected signal,
where now the average signals (υs and νs) are indicated by the dotted lines.

fast flux amplitude but smooth at the qubits from the effective low pass of the flux lines. All charge excitation pulses
are Gaussians truncated at ±2σ, while the stabilization drives are square pulses with few ns soft ramp-up/down of
the amplitude.

The experiment is then repeated with a cycle period of 250µs, leaving enough idle time after each sequence for the
lattice sites to decay back to their (thermal equilibrium) ground states.

Appendix E: Readout of the Bose-Hubbard lattice

The on-site occupancies of the prepared many-body state is obtained by measuring the qubit state dependent
dispersive shift of the readout resonators, after a rapid detuning (“jump”) of the measured site to isolate it from the
rest of the lattice. We calculate the expectation values of Pn from ensemble averages of the readout signal, calibrated
with separately prepared qubit states |n〉. We consider two contributions to readout errors: (1) the “jump” during
which Landau-Zener crossings between the measured site and its neighbor(s) lead to population transfer between
neighbors, and (2) the dispersive readout where errors in the calibration states due to imperfect π-pulses used to
prepare them lead to errors when mapping the averaged readout signal to on-site occupancies.

1. Heterodyne dispersive readout

The on-site occupancy (i.e. transmon state) is measured with the state-dependent dispersive shift of the readout
resonator. The bare frequencies of the individual readout resonators ωread, their linewidths κread and coupling to the
qubits gread are listed in Table. S3. During readout, the measured site is typically detuned to δ ∼ 1 GHz below its
readout resonator. In this strongly dispersive regime where the differential dispersive shift between successive qubit
states 2χ ≈ 2π × 0.8 MHz exceeds the κread ∼ 2π × 0.4 MHz, we can distinguish different occupation states of the
qubit by measuring the complex reflection off of the readout resonator at several probe frequencies.

We perform the readout at relatively weak probe powers (< 10 intra-resonator photons) for a duration of 1µs.
The heterodyne signal recorded by the acquisition ADC card is converted to quadrature I/Q signals via digital
homodyning and averaged over the readout window. The distinguishability of different trasmon states from a single-
shot measurement is limited to ∼ 40−50% by thermal noise of the HEMT amplifier. Therefore we use averaged readout
signals (of typically ∼ 5000 runs of the experiment) to extract the expectation values of the on-site occupancies. The
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scales for Pn are calibrated by measuring |0〉 , |1〉 , |2〉 states (transmon |g〉 , |e〉 , |f〉 states) prepared using resonant
π-pulses (see section below on effect of thermal population). Introduction of a near quantum limited amplifier for the
output, e.g. by using a traveling wave parametric amplifier (TWPA) will permit high-fidelity single-shot readout [47].

For each qubit, we choose two different probe frequencies ωgread and ωfread such that for ωgread we achieve optimal

distinguishability between |0〉 and |1〉 / |2〉 while minimizing the distinguishability between |1〉 and |2〉. Similarly ωfread
is chosen to distinguish |2〉 from |0〉 / |1〉. The measured I/Q signal is then projected onto an axis in I/Q space that

minimizes the distinguishability between |1〉 and |2〉 (|0〉 and |1〉) for ωgread (ωfread). This allows us to measure the

population in |0〉 and |2〉 with ωgread and ωfread, respectively. We denote the projected signals by υ and ν when probing

at ωgread and ωfread, respectively. This process is illustrated in Fig. S5, where we plot the readout signal from one of
the qubits, corresponding to a particular lattice site.

For reading out the lattice, we measure one qubit at a time, and separately for ωgread and ωfread each repeated ∼ 5000
times to obtain the averaged signals. During readout the measured qubit is spectrally isolated with neighbors far
detuned, allowing for clean π-pulses used for initializing the states for readout calibration.

2. Extraction of on-site occupancy

The finite effective temperature of the qubits means that the states prepared with resonant π-pulses are not perfect
fock states |n〉, but statistical mixtures originating from the initial thermal population nth. Therefore we need to take
into account nth when using the average readout signal from the prepared calibration states to extract the on-site
occupancies. Given our qubit frequencies and low effective qubit temperatures, it is a good approximation that all
thermal excitation promotes qubits to the n = 1 state, with negligible thermal excitation to n > 1. Aside from the
thermal ground state, we prepare 3 more states by applying resonant π−pulses, with density matrices given by:

Thermal ground state: A = (1− nth) |g〉 〈g| + nth |e〉 〈e| + 0 |f〉 〈f |
A + π01 pulse: B = nth |g〉 〈g| + (1− nth) |e〉 〈e| + 0 |f〉 〈f |
A + π01 + π12 pulses: C = nth |g〉 〈g| + 0 |e〉 〈e| + (1− nth) |f〉 〈f |
A + π12 pulse: D = (1− nth) |g〉 〈g| + 0 |e〉 〈e| + nth |f〉 〈f |

If the projected heterodyne readout voltages for the states are υi and νi (i ∈ A,B,C,D) when probing at ωgread and

ωfread respectively, we see that:

nth

1− nth
=
νD − νA
νC − νA

from which we obtain nth. Then using the measurements of the calibration states, we can extract the on-site occupancy
of an arbitrary state ψ, with measured readout signals υψ and νψ. By defining the uncalibrated populations p0(ψ) =
(υψ − υB)/(υA − υB) and p2(ψ) = (νψ − νA)/(νC − νA), we get the on-site occupancies Pn assuming all population
resides in n ≤ 2:

P0(ψ) = p0(ψ)(1− 2nth) + nth

P2(ψ) = p2(ψ)(1− nth)

P1(ψ) = 1− P0(ψ)− P2(ψ)

Given the calibration π-pulse errors of ∼ 0.5%, we estimate a ±1% uncertainty on the extracted P1 from readout
calibrations.

3. Landau-Zener transfer during measurement

The rapid “jump” of the qubit frequency before the readout detunes the measured qubit far away from its neighbors
(|δ| > |U |), not only to freeze tunneling dynamics, but also to suppress neighbor-occupancy-dependent shifts of the
measured qubit’s levels (which can in turn shift the averaged readout signals). During the “jump” ramp, there will
be Landau-Zener population transfer whenever the measured qubit’s levels cross any of its neighbors’ levels, which
leads to discrepancies between the measured on-site occupancies and the occupancy of the original lattice prior to the
jump. In our cases, we typically jump the measured qubit up in frequency to δ > 2|U | relative to its neighbors. Thus

the on-site population is affected primarily by two Landau-Zener crossings: initially when ωQ01 = ωNN
01 (corresponding
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to half a LZ crossing); and midway through the jump when ωQ12 = ωNN
01 . Here Q is the measured site, and NN any of

its neighbors.
We can estimate these transfer probabilities by numerically solving the dynamics of the measured qubit and its

neighbors, using the known lattice parameters and detunings used in the experiments and the estimated short-time
form of the jump (Sec. C 2 c). The magnitudes of these population transfers are dependent on the occupancy of the
measured qubit as well as those of its neighbors. For our experimental parameters, the worst cases happen at higher
lattice fillings with Bose-enhanced tunneling (in our case n = 2), and when neighbors with occupancies that differ
by one come into resonance during the jump. The induced population change on the measured site can be as much
as 10− 20% in such cases, leading to significant errors when measuring states with large number fluctuations (i.e. a
superfluid). However for the single stabilized site or the n = 1 Mott phase we study in this work, these Landau-Zener
transfers can be much less– on the few percent level. Therefore it is possible to use the measured on-site populations
plus the numerics to estimate the likely (rather than worst-case) population transfer that occurred during the detuning
jumps. Here we assume no coherence between lattice sites, which is reasonable given that the stabilization infidelities
are primarily thermal excitations from the reservoir.

(1) For single site stabilization with the “one transmon” scheme, the stabilized site (Q1) is jumped up in frequency
by ∼ 700 MHz for readout. If we take on-site states of ρS = 0.09 |0〉〈0|+0.81 |1〉〈1|+0.10 |2〉〈2| from the measurement
(as a statistical mixture of the different fock states) and ρR = 0.925 |0〉〈0|+0.075 |1〉〈1| (the steady state reservoir due
to thermal population), the numerically calculated on-site state after the jump reads ρ′S = 0.093 |0〉〈0|+ 0.811 |1〉〈1|+
0.095 |2〉〈2|. Thus in this case, we estimate that the Landau-Zener crossings during the jump change the occupancies
by < 0.5% (0.1% on P1). The measured optimal fidelity after the jump is P1 = 0.81 (P0 = 0.09, P2 = 0.10). With
readout uncertainty of ≈ 1% from pulse calibration discussed previously, we therefore place an estimated total errorbar
on the optimal “one trasmon” scheme fidelity as P1 = 0.81(±0.01). Here the population transfer is small because
the stabilized site’s 0− 1 transition starts already detuned, while the n = 2 transition and the resonant reservoir are
rarely populated.

(2) In the “two transmon” scheme, again using actual experimental parameters and the estimated fast flux shape
to numerically calculate the most likely Landau-Zener transfers, we find that near the steady state optimal fidelity,
the stabilized site P0 should change by ≤ 1%; P1 will be reduced by up to 5% that mostly turn into P2. Changes in
P0 is significantly less because in the experiment the 0−1 transition of the stabilized site remains detuned throughout
the jump, and therefore also less sensitive to exact details of the ramp. This allows us to use the measured (1−P0) as
an upper bound for the fidelity. The measured optimal fidelity (after the jump) is P1 = 0.89 (P0 = 0.08, P2 = 0.03).
Therefore we place a total estimated errorbar as P1 = 0.89(+0.04/−0.01).
(3) For the dissipatively stabilized Mott fidelity, the numerically estimated population transfers are similar to the

“two transmon” scheme above. On average over all sites of the Mott, changes in P0 remains small (< 1%) while
P1 (P2) is expected to reduce (increase) by a few percent. Using the measured 〈1 − P0〉 = 0.90(±0.01) as an upper
bound, this puts the errorbar for the optimal average Mott fidelity at 〈P1〉 = 0.88(+0.03/−0.01). The measured
〈P2〉 = 0.02(+0.01/−0.02) indicates that infidelities in the Mott state are predominantly holes.

In future experiments, it is possible to use RF flux modulation on the measured qubit to create an instantaneously
detuning of the qubit without the need to ramp through the intermediate Landau-Zener crossings. Alternatively, the
use of tunable couplers would allow the Bose-Hubbard tunnelings to be completely turned off during the readout,
eliminating the population transfers.

By using near-quantum limited amplifiers to achieve fast high-fidelity single shot readout, we can detune the
measured qubit up in frequency by only ∼ |U |/2 during readout. This avoids the crossing between the n = 2 of
the measured site and n = 1 of its neighbor, which is where the majority of the population transfer happens. This
approach is problematic in the current setup because with a relatively small detuning of U/2 the measured qubit
state frequencies are dependent on its neighbors’ state which changes the average readout signal significantly. Thus
the calibration signals measured when the neighbors are all empty can not be used to properly extract the on-site
occupancies of a generic state in the lattice.

Appendix F: Qubit and Bose-Hubbard lattice characterization

1. Qubit Coherences

In Table. S3 we list measured relaxation times T1, dephasing times T ∗2 , and the corresponding decoherence rates
for all lattice sites (transmon qubits). Sites Q2 to Q8 are measured near the nominal lattice freq of ∼ 4.7 GHz; while
Q1 is measured at ∼ 5.3 GHz to avoid being Purcell limited by the reservoir linewidth. For T1, values in parenthesis
indicate standard deviations of 10 measurements taken over one day. The dephasing times T ∗2 are limited by flux
noise from the external flux bias sources, especially the AWGs that produces the fast flux bias pulses. We measure
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

T1 (µs) 22(4) 19(4) 30(3) 40(3) 34(4) 42(3) 19(3) 36(5)

Γ1/2π (kHz) 7.2 8.4 5.3 4.0 4.7 3.8 8.4 4.4

T ∗2 (µs) 2 - 4 2 - 4 2 - 4 2 - 4 2 - 4 2 - 4 2 - 4 5

Γ∗φ/2π (kHz) 40-80 40-80 40-80 40-80 40-80 40-80 40-80 30

U/2π (MHz) -254.3 -258.6 -254.1 -160.0 -253.2 -247.7 -252.0 -252.4

Ji−1,i/2π (MHz) 16.30 12.68 6.34 6.47 6.18 6.33 6.37 6.09

nth 0.07 0.06 0.03 0.05 0.04 0.06 0.02 0.06

ωread/2π (GHz) 6.474 6.367 6.467 6.346 6.430 6.310 6.381 6.261

gread/2π (MHz) 70 69 70 66 70 70 70 68

κread/2π (MHz) 0.50 0.40 0.44 0.43 0.40 0.44 0.42 0.33

TABLE S3. Measured lattice parameters. Here we list all lattice site coherences, Bose-Hubbard parameters, steady state
thermal populations, and readout parameters.

T ∗2 ≈ 2− 4µs for Q1−Q7, depending on the output amplitude of the these AWGs. Q8 does not have a direct on-chip
flux line, thus has a longer T ∗2 .

2. Bose-Hubbard Parameters

a. Tunneling rates J

To measure the nearest neighbor tunneling matrix element Jij we observe the dynamics of a single photon in an
isolated double well potential formed by the two neighboring lattice sites i and j. Starting with an empty lattice, we
excite one photon into site i by applying a π-pulse at ωi01 while all other lattice sites are far detuned. We then rapidly
tune site j into resonance with site i and measure the population in each site as a function of the evolution time. The
population oscillation should have a frequency of 2Jij . In Fig. S6(a), we show one such measured oscillation for J56.
All tunneling rates are listed in Table. S3. The value for J12 was designed to give better stabilizer performance. The
tunneling JR1 between Q1 and the reservoir is measured by tuning Q1’s frequency across the reservoir lossy resonator,
and observing the avoided crossing (of splitting 2JR1) in the reflection spectra of the lossy resonator. Next nearest
neighbor tunnelings are suppressed by factors of ∼ 7−10, based on finite element simulations of the microwave circuit.

b. On-site interactions U

The effective on-site photon-photon interaction energy is U = ω12 − ω01, given by the anharmonicity of the qubits
that make up the lattice sites. For transmon qubits, the anharmonicity is negative, corresponding to the realization
of an attractive Bose-Hubbard lattice. The qubit transition frequencies and thus U can be measured precisely from
Ramsey experiments. The transitions can also be probed in the excitation spectra of a single spectrally isolated
lattice site, as shown in Fig. S6(b). Starting with an initially empty site, we drive an excitation pulse at varying
frequencies and measure the response of the readout cavity (blue trace); here we observe for Q8 the transition at
ω01 = 2π × 4.955 GHz. The excitation pulse is a truncated Gaussian that drives a π-pulse on the ω01 resonance. The
width of the peak is Fourier limited by the pulse spectral width. To probe the 1 → 2 transition, we first drive a
π-pulse on the 0 → 1 transition (at ω01) followed by a second excitation pulse with varying frequency; the observed
new transition is located at ω12 ≈ 2π × 4.704 GHz, indicating an effective on-site interaction U = −2π × 251 MHz.

The on-site interaction U at each site is listed in Table. S3, measured at the nominal lattice frequency of ω01 ∼
4.7 GHz. The anharmonicity of transmon qubits changes slightly as the qubit frequency is tuned [35]. For the
parameters of our device, near the nominal lattice location , the change in interaction U is roughly δU ≈ +0.75 MHz
per +100 MHz of change in ω01. U for Q4 differs from all other sites due to a fabrication defect on the current device
chip. Despite of it, the lattice remains in the strongly interacting regime with |U | � J . For experiments shown in
this work, this defect has little affect on the stabilization performance or the hole dynamics.

The energy spacings of higher transmon qubit levels (i.e. higher occupancy numbers of the lattice site, n > 2)
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FIG. S6. Characterization of the Bose-Hubbard parameters. (a) Oscillation of a single photon in a resonant double
well of Q5 and Q6. The fitted oscillation frequency gives 2J56. The reduced contrast and the offset at t = 0 are results of the
finite speed ramps of the on-site energies. (b) Excitation spectra of an isolated lattice site, with the site initially empty (red)
or filled with one photon (blue). The difference in frequency between the two observed transitions (ω01 and ω12) reveals the
effective on-site interaction U.

FIG. S7. Spectroscopy of the lattice. All 8 lattice sites are tuned to ≈ 4.750 GHz. After a weak driving of the lattice via
the shared charge driving line, the population in Q8 is measured as a function of excitation frequency. Dotted lines indicate
normal mode frequencies calculated from a tight binding model.

give rise to effective multibody on-site interactions Un (n > 2). For example, at the nominal lattice frequency
∼ 4.7 GHz, the transmon n = 3 state leads to an effective on-site three-body interaction of U3 ≈ −27 MHz for our
qubit parameters. However, these higher order interaction terms are irrelevant for experiments presented in this work
where the on-site occupancies are confined to n = 0, 1, 2 and probabilities of n > 2 (e.g. due to far off-resonant
excitation, or thermal noise) remain mostly negligible.

3. Lattice spectroscopy

Our circuit lattice can be easily excited with a coherent microwave tone near the on-site energy, and the site-resolved
readout allow spatially resolved spectroscopy of the lattice. As an example, we show in Fig. S7 the measured ground
band spectra of the 8-site homogeneous lattice (Q1 −Q8): a weak 2µs charge driving pulse is applied to the readout
transmission line, simultaneously exciting all sites of the initially empty lattice. We measure the n = 1 population
at the other end on Q8. We resolve all 8 eigenmodes of the lattice, with good agreement to predictions from a
tight binding model using the measured tunneling rates. Such spectroscopic measurements can be easily extended to
transport measurements of the many-body states; and used for Hamiltonian tomography to extract lattice properties,
including topological ones, from reflection and transmission spectra [48].

4. Finite thermal occupancies

At thermal equilibrium, all resonators in our superconducting circuit remain at finite temperatures. The effective
temperatures are typically higher then the actual temperature at base (20 mK) and limited by other sources of
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FIG. S8. Extracting reservoir thermal population. The dephasing rate of Q1 is measured as a function of detuning from
the reservoir. The combined rate (blue) has contributions from qubit relaxation, reservoir thermal population (here calculated
with nRth = 0.075), and flux noise on the qubit.

microwave noises e.g. leakage of thermal radiation from hotter stages of the fridge. We discuss below the effect of
thermal population on the stabilization experiments, from (1) the transmon sites, (2) the readout resonators, and (3)
the reservoir (lossy resonator).

The thermal population of the transmon qubits at equilibrium are measured in Sec. E, and corresponds to effective
temperatures in the range of ∼ 60 − 80 mK. The performance of the dissipative stabilizers are not affected by the
thermal population on the stabilized lattice sites, as long as the rate at which the stabilizer is refilling the lattice sites is

much faster then the rate at which the on-site thermal relaxation takes place. The latter happens at ∼ nQi

th Γ1 < 1 kHz,
which is much smaller than the optimal stabilizer filling time scales (MHz) for all current experiments. Therefore the
dissipative stabilizer could be used to effectively “cool” the system to lower entropy per site from the initial thermal
ground state.

The primary effect of the readout resonator finite temperature is to induce additional dephasing of the lattice
sites due to the dispersive coupling between the resonator and the transmon. In our experiments when the sites are
tuned near the lattice location, the large qubit-resonator detuning (δ ∼ 1.5 GHz) and the relatively small coupling
(g ≈ 65 MHz) make this resonator thermal population induced dephasing rate on the order of a few kHz, much smaller
compared to the flux noise induced dephasing which remain the limiting factor for T ∗2 .

The most critical finite temperature effect in our system, is the finite thermal population of the reservoir. The
dissipative stabilization relies on the cold reservoir to dissipate the excess entropy. Thermal population in the reservoir
will be coupled back into the stabilized sites and appear as infidelities. In Sec. G 2 below, we numerically study the
effect of reservoir temperature on the stablization fidelity. The reservoir thermal population nRth is calibrated by
measuring the additional dephasing induced on Q1 as Q1’s frequency is tuned close to that of the reservoir. In
Fig. S8, we plot the measured dephasing rate as a function of the detuning between Q1 and the reservoir. The
dephasing has contributions from (1) T1 relaxation, Purcell limited by the reservoir linewidth; (2) fluctuations due to
the reservoir thermal population nRth [49]; and (3) flux noise which here we assume be to a constant using measured
asymptotic values at larger detunings. The only free parameter for the theory curve is nRth which we fit to the
experimental data to extract a nRth = 0.075(5).

Appendix G: Numerical simulation of the stabilizer

We simulate the performance of the single site stabilizer by numerically solving the Lindblad master equation:

ρ̇(t) = − i
~

[H(t), ρ(t)] +
∑
m

1

2

[
2Cmρ(t)C†m − ρ(t)C†mCm − C†mCmρ(t)

]
Here the system Hamiltonian H(t) includes both the Bose-Hubbard terms (HBH) and the external coherent driving
terms for the stabilization, ρ is the density matrix of the lattice system. The collapse operators are Cm =

√
γmLm,

where Lm are the Lindblad jump operators through which the system couples to the environment and γm are the
corresponding coupling rates. In the simulations we include single photon relaxation Γ1 and dephasing Γφ, reservoir

linewidth κR, and finite qubit and reservoir temperatures (with thermal populations nQi

th and nRth).
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1. Single site stabilizer performance

a. “One transmon” scheme

For the “one transmon” scheme, the complete system Hamiltonian used for simulations reads (in the rotating frame
of the stabilization drive):

H = (ωR − ωd)a†RaR + (ωS01 − ωd)a
†
SaS +

US
2
a†Sa

†
SaSaS − J1R(a†SaR + a†RaS) +

Ωd
2

(aS + a†S)

here the stabilized site S is Q1. The collapse operators included are:

Reservoir dissipation & thermal population:
√
κR(1 + nRth)aS +

√
κRnRtha

†
S

Stabilized site relaxation & thermal population:
√

ΓS1 (1 + nSth)aS +
√

ΓS1 n
S
tha
†
S

Stabilized site dephasing:
√

2ΓSφa
†
SaS

In this scheme the detunings are set to ωS01 = ωR+US . All other parameters used in the simulations are experimentally
measured values. The dephasing term is included to match the measured T ∗2 for the 0 − 1 transition, but does not
necessarily give the right dephasing for the higher levels or an accurate representation of the actual characteristics
of the dephasing noise in the device. However, given the small dephasing rate Γφ � J, U,Ωd etc., the stabilizer
performance is not affected by the exact details of the dephasing. When solving the master equation, we keep on-site
occupancies up to n = 2 for both the stabilized site and the reservoir: during the single site stabilization, higher
excited state population (n > 2) in the strongly interacting site should be suppressed in the absence of resonant
driving, while the relatively large linewidth of the reservoir should prevent it from being populated by more than one
photon at a time.

In Fig. S9 we plot the stabilized site population using the “one transmon” scheme after driving for 3µs. We also
plot the filling dynamics on the stabilized site at the driving parameters that give the experimentally observed optimal
stabilizer performance. We see quantitative agreement between experiment and the no free parameter numerical sim-
ulation, with two slight discrepancies: (1) At higher driving rates, we measure more n = 2 population experimentally,
which can be attributed to off-resonant excitation of higher transmon levels on the stabilized site that are not included
in the numerics. (2) When driving near ωR, we observe significant population in the stabilized site. This comes from
a direct coupling between the stabilization drive line and the reservoir, due to their close proximity on the device
chip and the resulting capacitive coupling. The resonant drive populates the reservoir and those photons can tunnel
back into the stabilized site. We can qualitatively reproduce the observed features by adding to the simulation a term

∝ Ωd(aR + a†R)/2, with a strength consistent from finite element simulations of the device. The exact strength and
frequency dependence of this coupling is difficult predict or measure precisely. We have verified numerically that the
addition of higher transmon levels, the direct driving term on the reservoir, or the exact implementation of transmon
dephasing, all have negligible affects on the stabilizer performance near the designed optimal driving parameters.

b. “Two transmon” scheme

For the “two transmon” scheme, the Hamiltonian reads:

H = (ωR − ωd)a†RaR + (ωS01 − ωd)a
†
SaS + (ωC01 − ωd)a

†
CaC +

US
2
a†Sa

†
SaSaS +

UC
2
a†Ca

†
CaCaC

−J1R(a†SaR + a†RaS)− J12(a†SaC + a†CaS) +
Ωd
2

(aC + a†C)

Here the collision site (C) is Q1, the stabilized site (S) is Q2, and they are detuned by ∆ = ωS01 − ωC01 = ωC01 − ωR =
100 MHz. The collapse operators are the same as for the “one transmon” scheme, with the addition of terms for
the collision site that have the same expressions as those for the stabilized site. The stailization drive line, while
driving Q1(C) at Ωd, also has a direct coupling to Q2(S) with rate ηΩd due to residual capacitive coupling on chip.
Therefore to accurately simulate the stabilized site dynamics near ωd ∼ ωS01, we include in H an additional term

ηΩd cos i(ωS01 − ωd)t(aS + a†S)/2. We use η = −0.103 measured experimentally from resonant Rabi rates of Q2. The
inclusion of this term does not effect the stablizer performance, where the drive is always off-resonant with ωS01.
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(a)

(b)
Stabilized site

FIG. S9. “One transmon” scheme. Comparison between experimental data and numerical simulations. (a) Stabilized site
occupancy after 3µs drive. (b) Time dynamics at optimal driving.

(a) (b)
Stabilized site

Collision site

FIG. S10. “Two transmon” scheme. (a) Stabilized site occupancy after 3µs drive. (b) Time dynamics of both the
stabilized site and the collision site at optimal driving.
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FIG. S11. Effect of reservoir temperature. As a function of thermal population in the reservoir, the optimal single site
stabilization fidelity is calculated using the current device parameters, for both the “one transmon” and “two transmon” scheme.
For the “two transmon scheme the detuning is set to ∆ = 100 MHz, and we show optimal fidelities both when driving near
ωd ∼ ωC01 (I), and driving at the experimentally observed optimal ωd near the sharp feature at ωd ∼ ωS01 + U/2 (II). The gray
line indicates nRth = 0.075 in our current experiments.

The comparison between experiment and simulation for the “two transmon” scheme is shown in Fig. S10. The
observed population near ωd ∼ ωR is again from the direct driving of the reservoir, not included in the simulations.
There is also a discrepancy at high Ωd near ωd ∼ ωS01 − 3∆/2 which is likely a result of state truncation in the
simulation: the higher excited states of the collision site lie around this frequency, and can get populated at high
driving rates. We also show in (b) the filling dynamics at the optimal driving parameter (star in (a), numbers stated
in the main text). At short times, the collision site population show oscillations at rate ∼ Ωd from direct driving by
the stabilization drive. Since the optimal point happens near a sharp feature resulting from interference of multiple
processes, the oscillatory dynamics are sensitive to exact on-site energies and various driving rates, resulting in some
discrepancy between data and simulation. The excess n = 2 population in the measured steady state could still be a
result of off-resonant driving to higher n states that ended up (e.g. via decay) in n = 2.

2. Reservoir thermal population

The current single site stabilization fidelity (and therefore also the Mott fidelity) is mostly limited by thermal
populations in the reservoir that re-enter the stabilized site(s). In Fig. S11, we plot the simulated optimal fidelities
for the “one transmon” and “two transmon” schemes as a function of the reservoir thermal population nRth. As nRth
is varied, the optimal driving parameters remain unchanged. Qualitatively, the numerical results indicate a thermal
population of nRth in the reservoir causes at least the same amount of additional infidelity in the stabilizer compared
to a reservoir at near zero nRth.

In our current device and microwave setup, the reservoir at ∼ 4.5 GHz with measured nRth = 0.075 corresponds to
an effective temperature of ≈ 80 mK, significantly higher than the physical temperature of the sample at ∼ 20 mK.
We expect the reservoir temperature to be limited by thermal photon from the upper stages of the fridges, since
the reservoir’s linewidth is obtained by coupling to the input-outline transmission line of the sample. Additional
filtering/attenuation on the input and output lines at the reservoir frequency should help reduce nRth: at ∼ 45 mK,
nRth already drops to 1% at ωR ∼ 4.5 GHz. In the future, the reservoir thermal population can be further reduced by
moving the reservoir to higher frequencies, and by coupling the reservoir to an individual terminated line that is well
thermalized to the base of the fridge.

3. Hole dynamics

Here we simulate the dynamics of the hole defect on top of the dissipatively prepared Mott insulator (Fig. 5). The
stabilizer used is the “two transmon” scheme above, and the coherent lattice is added to the simulation assuming
degenerate on-site energy and using experimentally measured tunnelings Jij . The hole dynamics with and without the
stabilization drive are plotted and compared to the experiment in Fig. S12. The initial state used in the simulation
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FIG. S12. Dynamics of hole defect. Comparison between experimental data and numerical simulations, for evolution of a
single hole defect on top of the Mott insulator, in the absence (a) or presence (b) of the stabilization drive.

has unity filling (P1 = 1) across the lattice expect on Q0 which is empty (P0 = 1). The additional “dephasing” of
the wavepacket in the experiments is partly a result of the initial infidelity of the dissipatively prepared Mott state
(thermal mixture of P0 ≈ 10% on each site). The initial hole density of ∼ 80% is a result of the relatively small
detuning (∼ 25 MHz) between Q8 and the rest of the lattice during the Mott preparation, and for ease of comparison
we have scaled the simulations to the same hole density.
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